
Int. J. Approx. Reason. 164 (2024) 109059

Contents lists available at ScienceDirect

International Journal of Approximate Reasoning

journal homepage: www.elsevier.com/locate/ijar

Concepts of neighbors and their application to instance-based

learning on relational data

H. Ambre Ayats, Peggy Cellier, Sébastien Ferré ∗,1

Univ Rennes, INSA Rennes, CNRS, Inria, IRISA - UMR 6074, Rennes, F-35000, France

A R T I C L E I N F O A B S T R A C T

Keywords:

Relational data

Knowledge graph

Instance-based learning

Formal concept analysis

Graph-FCA

Concepts of neighbors

Knowledge graphs and other forms of relational data have become a widespread kind of data, and
powerful methods to analyze and learn from them are needed. Formal Concept Analysis (FCA)
is a mathematical framework for the analysis of symbolic datasets, which has been extended
to graphs and relational data, like Graph-FCA. It encompasses various tasks such as pattern
mining or machine learning, but its application generally relies on the computation of a concept
lattice whose size can be exponential with the number of instances. We propose to follow an
instance-based approach where the learning effort is delayed until a new instance comes in, and
an inference task is set. This is the approach adopted in k-Nearest Neighbors, and this relies
on a distance between instances. We define a conceptual distance based on FCA concepts, and
from there the notion of concepts of neighbors, which can be used as a basis for instance-based
reasoning. Those definitions are given for both classical FCA and Graph-FCA. We provide efficient
algorithms for computing concepts of neighbors, and we demonstrate their inference capabilities
by presenting three different applications: query relaxation, knowledge graph completion, and
relation extraction.

1. Introduction

Nowadays, a lot of information is available in the form of relational data, such as relational databases [1], graph databases [2],
or knowledge graphs [3]. In a relational dataset, the information is represented in terms of entities and relationships between those
entities. Graphs are a common representation of relational data, using nodes for entities and edges for relationships. The different
existing formalisms differ in the kind of nodes and edges they support or not: e.g., labeled edges, n-ary edges, literal values as nodes.
The major advantage of relational data is their versatility and representation power. All kinds of structured data can be represented
accurately as entity-relation graphs, including tabular data, XML trees, JSON objects, biological sequences or linguistic parse trees.
The growing amount of relational data calls for powerful methods to analyze them and learn from them.

Formal Concept Analysis (FCA) [4,5] is a mathematical framework for the analysis of symbolic datasets. The strength of FCA
is to encompass in one framework various tasks such as pattern mining, rule mining, machine learning, hierarchical clustering,
and information retrieval [6]. In its simplest setting, an FCA dataset is a binary relation between objects and attributes. However, a
number of extensions have been proposed to cope with more complex data and settings. Fuzzy Concept Analysis [7] adds truth degrees
to the relations between objects and attributes, Temporal Concept Analysis (TCA) [8] adds a temporal dimension to the description

* Corresponding author.

E-mail addresses: ambre.ayats@irisa.fr (H.A. Ayats), peggy.cellier@irisa.fr (P. Cellier), ferre@irisa.fr (S. Ferré).
Available online 16 October 2023
0888-613X/© 2023 Elsevier Inc. All rights reserved.

1 The authors are listed in alphabetical order. This research is supported by ANR projects SmartFCA (ANR-21-CE23-0023) and AI4SDA (ANR-20-THIA-0018).

https://doi.org/10.1016/j.ijar.2023.109059

Received 30 January 2023; Received in revised form 4 October 2023; Accepted 6 October 2023

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ijar
mailto:ambre.ayats@irisa.fr
mailto:peggy.cellier@irisa.fr
mailto:ferre@irisa.fr
https://doi.org/10.1016/j.ijar.2023.109059
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijar.2023.109059&domain=pdf
https://doi.org/10.1016/j.ijar.2023.109059

International Journal of Approximate Reasoning 164 (2024) 109059H.A. Ayats, P. Cellier and S. Ferré

of objects, and Pattern Structures [9] allow for custom descriptions instead of sets of attributes. More specifically, several extensions
have been proposed for relational data: Relational Concept Analysis (RCA) [10], concept lattices of relational structures [11], and
more recently Graph-FCA [12]. A major issue in FCA is that the computation cost of the concept lattice can grow exponentially with
the size of the data, and becomes even worse with relational extensions of FCA. However, depending on the task, it may not be
necessary to compute all concepts and their lattice. Therefore, methods that compute only the relevant concepts w.r.t. the current
task have to be developed.

The computation of the whole concept lattice can be compared to the learning of a model from training data in machine learning
(model-based learning), where the model is then applied to new instances in order to make inferences about them. An alternative
paradigm is instance-based learning, also known as lazy learning. It avoids the costly computation of a global model by delaying the
learning effort until a new instance – called the query instance – comes in. In this way, only a specialized local model needs to be
built in order to perform the desired inference on the query instance. Another advantage of this paradigm is that it supports frequent
updates in the training dataset. Indeed, there is no training phase, which is usually long and energy-consuming. The most famous
example of instance-based learning algorithm is the k-Nearest-Neighbors (kNN) algorithm [13]. It represents both training instances
and query instances as points in a vector space. The class of a query instance is predicted from the class of the training instances that
are the nearest neighbors of the query instance in the vector space. This involves the definition of a distance between instances that
reflects their similarity. The research question we address in this paper is the following: What is a relevant definition of distance (or
similarity) in the FCA context? and How such a distance can be used for different tasks by instance-based learning?

In this paper, we propose an instance-based learning method based on FCA that can be applied to various inference tasks. We
first define a conceptual distance between instances in terms of formal concepts, and then the concepts of neighbors of a query instance
as a basis for various inference tasks. Those definitions are given for classical FCA and also for the Graph-FCA extension in order to
address relational data. The choice of Graph-FCA among the relational extensions is motivated by several advantages of Graph-FCA:
(a) it supports n-ary relations; and (b) it can form n-ary concepts, which enables to reason on tuples of objects as instances (not only
singleton objects). In addition to a theoretical framework, we provide efficient algorithms for computing concepts of neighbors. We
also describe in detail three applications with different kinds of data and different kinds of inferences: approximate query answering,
knowledge graph completion, and relation extraction from texts.

This paper brings together work published in several papers, both applied [14–18] and theoretical [19], with different notations.
These contributions are here presented in a single formalism, giving them coherence and readability. In addition, this paper presents
a novel formalization of the notion of Concepts of Neighbors in the general FCA framework, making it available to classical FCA and
transferable to other FCA extensions.

The paper is organized as follows. Section 2 presents the related work. Section 3 gives the theoretical background on FCA
and Graph-FCA. Section 4 defines the notions of conceptual distance and concepts of neighbors. Section 5 details the algorithms and
implementation for the efficient computation of concepts of neighbors. Section 6 presents three applications of concepts of neighbors.
Finally, Section 7 concludes the paper and presents some perspectives.

2. Related work

The notion of concepts of neighbors and its computation methods can be seen under three aspects. First, it is a machine learning
approach on relational data for tasks such as classification. More precisely, it is an instance-based learning approach, conceptually
similar to kNN algorithms. Second, this method is part of the FCA theory, and especially of Graph-FCA, a generalized framework for
handling relational data under the FCA theory. Third, concepts of neighbors can be seen as a graph pattern mining method, searching
for similarities in the form of graph patterns in graph datasets. This section presents successively existing work related to those three
aspects, highlighting the main similarities and differences with concepts of neighbors.

Instance-based learning As far as we know, instance-based learning on relational data has rarely been studied. The most known
approach on this subject is Relational Instance-Based Learning (RIBL) [20]: it consists in defining a numerical distance between
items in a relational dataset and then applying an algorithm similar to the kNN algorithm to classify query instances. A similar
approach has been used in [21], this time in the context of the instance-based guided edition of RDF graphs. However, as far as
we know, all existing approaches use a numerical distance between objects, whereas Concepts of Neighbors use a symbolic distance
based on formal concepts.

Formal concept analysis Because of its relatively low computational cost, the idea of using instance-based learning to perform
classification has been considered in FCA-based machine learning [22]: instead of computing the whole concept lattice of a context,
it consists into computing only the concepts related to the object to be classified. Therefore, for a single classification, the number
of concepts to compute is reduced from exponential to linear. This idea has been applied to relation classification in biomedical
texts [23]. This principle has been extended with other techniques such as approximation, random sampling and parallelization to be
applied to big data [24,25]. On a different task, information retrieval, the user query is considered as the query instance, and a notion
of cousin concepts enables to find approximate answers to the user query and to rank them by increasing distance [26]. However,
the cousin concepts are found by navigating the concept lattice, which therefore has to be computed beforehand. Our concepts of
neighbors can be seen as a generalization of cousin concepts, and we provide a lazy algorithm for their computation. Approximate
2

query answering is one of the applications of concepts of neighbors (see Section 6.1).

International Journal of Approximate Reasoning 164 (2024) 109059H.A. Ayats, P. Cellier and S. Ferré

Table 1

Example of a formal context where the set of objects is an excerpt
of the British royal family.

man woman adult kid married

Charles × × ×
Charlotte × ×
Diana × × ×
George × ×
Harry × × ×
Kate × × ×
William × × ×

Graph pattern mining The domain of graph pattern mining has been largely explored these last decades, and several types of ap-

proaches can be distinguished. The most classic ones, such as AGM [27], FFSM [28] or gSpan [29], are complete approaches, mining
all patterns over a given frequency. However, these methods encounter the pattern explosion problem: either the frequency threshold
is too high and the approaches return almost no pattern, or the frequency threshold is too low, and an intractable number of patterns
(millions or more) is returned. This problem led to more parsimonious graph mining approaches. Some of them such as Gprune [30]

rely on the user for specifying constraints on the patterns, others choose to select specific subsets of the frequent patterns, such as
SPIN [28] for the maximal patterns and CloseGraph [31] for the closed patterns. More recently, ideas from information theory have
been used to drastically reduce the amount of mined patterns: e.g., the Minimum Description Length (MDL) principle (e.g., Graph-

MDL+ [32]) or the maximum entropy [33]. Concerning knowledge graph mining, specific approaches have been developed, such as
SWApriori [34] for complete pattern mining, or rule mining approaches such as AMIE 3 [35] that aims to generate useful rules for
tasks such as knowledge graph completion. Unlike all above approaches that generate a global set of patterns, concepts of neighbors
are a local set of patterns that are relevant to a query instance. Moreover, the generated patterns are rooted patterns, i.e. they have a
distinguished node that corresponds to the query instance. All this make them fit for downstream inference tasks.

3. Preliminary definitions

In this section, we give the preliminary definitions used in the rest of the paper. We first present the main notions of Formal
Concept Analysis (FCA). Then the adaptation of those notions in the framework of Graph-FCA, an extension of FCA for multi-

relational data, is given as defined in [36].

In the following, for any set 𝑋, we note 𝑋∗ =
∞⋃
𝑖=0
𝑋𝑖 the set of tuples of elements in 𝑋 of any length.

3.1. Formal concept analysis (FCA)

In this section, we present the basic notions of FCA [5].

Definition 1. A formal context is a triple 𝐾 = (𝑂, 𝐴, 𝐼) where 𝑂 is a set of objects, 𝐴 a set of attributes and 𝐼 ⊆ 𝑂 ×𝐴 is an incidence

relation between objects and attributes. For each object 𝑜 ∈𝑂, we define 𝐼(𝑜) = {𝑎 ∈𝐴 ∣ (𝑜, 𝑎) ∈ 𝐼} as the description of 𝑜.

Table 1 gives an example of a formal context. The set of objects is an excerpt of the British royal family and the attributes are
some human characteristics, here to be a man, a woman, an adult, a kid, and married. The incidence relation associates each person
to his/her characteristics. For instance, in this context, Charles is a man, an adult and married.

Definition 2. We define the instances of a set of attributes as the function

𝑖𝑛𝑡∶ (𝐴)→ (𝑂)

𝑌 ↦ {𝑜 ∈𝑂 ∣ 𝑌 ⊆ 𝐼(𝑜)}

that maps a set of attributes to the set of the objects that have all the attributes in their description.

Definition 3. We define the properties of a set of objects as the function

𝑝𝑟𝑜𝑝∶ (𝑂)→ (𝐴)

𝑋↦
⋂
𝑜∈𝑋

𝐼(𝑜)
3

that maps a set of objects to the set of their common attributes.

International Journal of Approximate Reasoning 164 (2024) 109059H.A. Ayats, P. Cellier and S. Ferré

Fig. 1. (a) Graph context representing the British royal family. (b) PGP representing the sibling relationship between 𝑥 and 𝑦.

For instance, in Table 1, inst({𝑤𝑜𝑚𝑎𝑛, 𝑎𝑑𝑢𝑙𝑡}) = {𝐷𝑖𝑎𝑛𝑎, 𝐾𝑎𝑡𝑒} and prop({𝐶ℎ𝑎𝑟𝑙𝑒𝑠, 𝑊 𝑖𝑙𝑙𝑖𝑎𝑚}) = {𝑚𝑎𝑛, 𝑚𝑎𝑟𝑟𝑖𝑒𝑑, 𝑎𝑑𝑢𝑙𝑡}. The pair of
functions (inst, prop) forms a Galois connection between sets of objects and sets of attributes, which leads to the definition of formal
concepts.

Definition 4. Let 𝐾 = (𝑂, 𝐴, 𝐼) be a formal context, 𝑋 ⊆𝑂 a set of objects, and 𝑌 ⊆ 𝐴 a set of attributes. The pair (𝑋, 𝑌) is a formal
concept if and only if inst(𝑌) =𝑋 and prop(𝑋) = 𝑌 . 𝑋 is called the extension of the concept and 𝑌 the intension.

For example, in Table 1, ({𝐶ℎ𝑎𝑟𝑙𝑒𝑠, 𝑊 𝑖𝑙𝑙𝑖𝑎𝑚}, {𝑚𝑎𝑛, 𝑚𝑎𝑟𝑟𝑖𝑒𝑑}) is not a concept whereas ({𝐶ℎ𝑎𝑟𝑙𝑒𝑠, 𝑊 𝑖𝑙𝑙𝑖𝑎𝑚, 𝐻𝑎𝑟𝑟𝑦}, {𝑚𝑎𝑛, 𝑚𝑎𝑟𝑟𝑖𝑒𝑑})
is a concept.

The main theorem of FCA says that the set of all concepts of a context, when partially ordered by

(𝑋1, 𝑌1) ≤ (𝑋2, 𝑌2) ⟺ 𝑋1 ⊆𝑋2 ⟺ 𝑌2 ⊆ 𝑌1,

forms a complete lattice. This implies that for every pair of concepts 𝐶1, 𝐶2, there is an infimum concept 𝐶1 ∧𝐶2 (concept intersection)
and a supremum concept 𝐶1 ∨𝐶2 (concept union). There are also a most general concept ⊤ (top concept) and a most specific concept ⊥

(bottom concept).

3.2. Graph-FCA

Graph-FCA [36,37] is an extension of FCA for knowledge graphs, and more generally for relational data. Indeed, in FCA, objects
can be described individually but not the relationships between objects. The equivalent of a formal context for Graph-FCA is called
a graph context.

Definition 5. A graph context is a triple 𝐾 = (𝑂, 𝐴, 𝐼) where 𝑂 is a set of objects, 𝐴 a set of attributes and 𝐼 ⊆ 𝑂∗ ×𝐴 is an incidence
relation between tuples of objects and attributes.

Fig. 1 (a) is a graphical representation of a graph context. It represents an excerpt of the British royal family. The boxes are the
objects (e.g. Charlotte or Harry), the labels next to boxes are unary attributes (e.g. man, woman), and the arrow labels are binary
attributes (e.g. parent or spouse). It is also possible to have 𝑛-ary attributes with 𝑛 > 2 in Graph-FCA, although they are not used in
what follows. The unary incidence ((𝐾𝑎𝑡𝑒), 𝑤𝑜𝑚𝑎𝑛) ∈ 𝐼 says that Kate is a woman; we call it a node label and also write it 𝑤𝑜𝑚𝑎𝑛(𝐾𝑎𝑡𝑒)
for readability and by analogy to predicate logic. The binary incidence ((𝐺𝑒𝑜𝑟𝑔𝑒, 𝐾𝑎𝑡𝑒), 𝑝𝑎𝑟𝑒𝑛𝑡) ∈ 𝐼 says that Kate is a parent of George;
we call it a labeled edge and also write it 𝑝𝑎𝑟𝑒𝑛𝑡(𝐺𝑒𝑜𝑟𝑔𝑒, 𝐾𝑎𝑡𝑒).

Most models of knowledge graphs can be translated accurately to graph contexts: e.g., the RDF graphs of the Semantic Web [38],
conceptual graphs [39], RCA contexts [10]. For simple entity-relation KGs, entities translate to objects, relations to binary attributes,
and triples to binary incidences. For translating RDF graphs to graph contexts, we abstract each URI and blank node 𝑥 into an object
𝑜𝑥, and we add the following incidences to the context:

• incidence 𝑐(𝑜𝑥) for each triple (𝑥, rdf:type, 𝑐),
• incidence 𝑝(𝑜𝑥, 𝑜𝑦) for each triple (𝑥, 𝑝, 𝑦) where 𝑦 is not a literal,

• incidence 𝑝(𝑜𝑥, 𝑜𝑙) for each triple (𝑥, 𝑝, 𝑙) where 𝑙 is a literal and 𝑜𝑙 is an object representing its occurrence in this specific triple,

• incidence 𝑢(𝑜𝑢) for each URI 𝑢,
• incidence 𝑙(𝑜𝑙) for each occurrence 𝑜𝑙 of a literal 𝑙.

The sets of objects and attributes can be deduced from this set of incidences. In particular, the set of attributes is made of classes as
unary attributes, properties as binary attributes, and URIs and literals as unary attributes. In this representation, each RDF node is
4

represented by an object labeled by its URI or literal – or unlabeled in the case of a blank node. More details can be found in [37].

International Journal of Approximate Reasoning 164 (2024) 109059H.A. Ayats, P. Cellier and S. Ferré

The purpose of FCA is to discover patterns shared by objects. Whereas in classical FCA a pattern is a subset of attributes, in
Graph-FCA a pattern is a projected graph pattern, which expresses a common graph structure rooted in one or several nodes.

Definition 6. Let  be an infinite set of variables. A graph pattern 𝑃 ⊆ ∗ ×𝐴 is a set of pairs (𝑦, 𝑎), with 𝑦 a tuple of variables and
𝑎 an attribute. Each of those pairs can be seen as a 𝑛-ary directed incidence (with 𝑛 = |𝑦|) labeled by attribute 𝑎.

A projected graph pattern (PGP) is a pair 𝑄 = (𝑥, 𝑃) where 𝑥 ∈ ∗ a tuple of variables – called projected variables – and 𝑃 is
a graph pattern, such that each incidence of 𝑃 is transitively connected to at least one element of 𝑥. The arity of a PGP is the length
of 𝑥. A PGP of arity 𝑘 is also called a 𝑘-PGP. The set of PGPs of arity 𝑘 over a set of attributes 𝐴 is denoted by 𝑃𝐺𝑃𝑘(𝐴).

Compared to previously published work, we here make it explicit that PGPs should be connected. Indeed, disconnected incidences
would not contribute to PGPs’ meaning. This has no incidence on Graph-FCA results.

Fig. 1 (b) represents a 2-PGP defining the “sibling” binary relation, i.e. two persons with the same parents. Projected variables
are in double boxes. In practice, PGPs can be seen as queries on the graph context, and we reuse the notation of such queries for the
textual representation of PGPs:

[𝑥, 𝑦← 𝑚𝑎𝑛(𝑢),𝑤𝑜𝑚𝑎𝑛(𝑣), 𝑝𝑎𝑟𝑒𝑛𝑡(𝑥, 𝑢), 𝑝𝑎𝑟𝑒𝑛𝑡(𝑥, 𝑣),
𝑝𝑎𝑟𝑒𝑛𝑡(𝑦, 𝑢), 𝑝𝑎𝑟𝑒𝑛𝑡(𝑦, 𝑣), 𝑠𝑝𝑜𝑢𝑠𝑒(𝑢, 𝑣), 𝑠𝑝𝑜𝑢𝑠𝑒(𝑣, 𝑢)]

For any set of attributes 𝐴 and arity 𝑘, the set of 𝑘-PGPs 𝑃𝐺𝑃𝑘(𝐴) forms a bounded lattice, with a partial ordering ⊆𝑃𝐺𝑃 and an
infimum ∩𝑃𝐺𝑃 : 𝑄1 ⊆𝑃𝐺𝑃 𝑄2 means that 𝑄1 is a more general query than 𝑄2; and 𝑄1 ∩𝑃𝐺𝑃 𝑄2 is the least general generalization of
the two queries. Besides, we define the description of the tuple of objects 𝑜 as the PGP 𝑄(𝑜) = (𝑜, 𝑃 (𝑜)), where 𝑃 (𝑜) ⊆ 𝐼 is the subset
of incidences that are transitively connected to any element of 𝑜. It is the union of the connected components of the graph context
containing the elements of 𝑜, rooted in those elements. It plays the same role as 𝐼(𝑜) in FCA.

Definition 7. We define the set of answers of a PGP 𝑄 as the set of answers of 𝑄 seen as a query.

𝑎𝑛𝑠∶ 𝑃𝐺𝑃𝑘(𝐴)→ (𝑂𝑘)

𝑄↦ {𝑜 ∣𝑄⊆𝑃𝐺𝑃 𝑄(𝑜)}

In the example PGP of Fig. 1 (b), the set of answers over the example graph context is made of the pairs (𝐻𝑎𝑟𝑟𝑦, 𝑊 𝑖𝑙𝑙𝑖𝑎𝑚)
and (𝐺𝑒𝑜𝑟𝑔𝑒, 𝐶ℎ𝑎𝑟𝑙𝑜𝑡𝑡𝑒), and also their inverse because of the pattern symmetry, and also the identity pairs like (𝐻𝑎𝑟𝑟𝑦, 𝐻𝑎𝑟𝑟𝑦) and
(𝐶ℎ𝑎𝑟𝑙𝑜𝑡𝑡𝑒, 𝐶ℎ𝑎𝑟𝑙𝑜𝑡𝑡𝑒) because there is no inequality constraints between variables 𝑥 and 𝑦. The answers of 𝑄(𝑜) are the set of all
tuples of objects that match everything that is known about 𝑜.

Definition 8. We define the most specific query of a set of 𝑘-tuples of objects as the largest 𝑘-PGP according to ⊆𝑃𝐺𝑃 whose set of
answers contains 𝑅.

𝑚𝑠𝑞∶ (𝑂𝑘)→ 𝑃𝐺𝑃𝑘(𝐴)

𝑅↦
⋂
𝑜∈𝑅

𝑄(𝑜)

In the example graph context, the most specific query of Charlotte and Kate is that they are women: msq({𝐶ℎ𝑎𝑟𝑙𝑜𝑡𝑡𝑒, 𝐾𝑎𝑡𝑒}) = [𝑥 ←
𝑤𝑜𝑚𝑎𝑛(𝑥)]. The most specific query of Charlotte and William is [𝑥 ← 𝑃𝑠𝑖𝑏𝑙𝑖𝑛𝑔 , 𝑚𝑎𝑛(𝑦)], where 𝑃𝑠𝑖𝑏𝑙𝑖𝑛𝑔 is the pattern of the above example
PGP. It says that Charlotte and William have in common married parents and a brother. As proven in [37], the pair of functions
(ans, msq) forms a Galois connection between (𝑂𝑘) and 𝑃𝐺𝑃𝑘(𝐴), for any 𝑘. This leads to the definition of graph concepts.

Definition 9. Let 𝐾 = (𝑂, 𝐴, 𝐼) be a graph context. A graph concept of arity 𝑘 (also called a 𝑘-concept) is a pair 𝐶 = (𝑅, 𝑄) ∈
(𝑂𝑘) × 𝑃𝐺𝑃𝑘(𝐴) such that 𝑅 = ans(𝑄) and 𝑄 = msq(𝑅). 𝑅 is called the extension of the concept, and 𝑄 is called the intension.

For each arity 𝑘, the set of all 𝑘-concepts forms a complete lattice where two concepts are ordered, (𝑅1, 𝑄1) ≤ (𝑅2, 𝑄2), iff
𝑅1 ⊆ 𝑅2, and iff 𝑄2 ⊆𝑃𝐺𝑃 𝑄1. FCA is the special case of Graph-FCA where only unary attributes are used in the graph context, and
only 1-concepts are considered. A more extensive presentation of Graph-FCA can be found in the reference journal paper [16]. An
implementation2 is available for the computation of graph concepts and their visualization [40].

4. Concepts of neighbors

Concepts of neighbors define a distance/similarity scheme in terms of FCA concepts, in a literal way because concepts are used
directly as a measure of the distance/similarity between two objects. This is in contrast with the usual definitions of distance or
5

2 https://bitbucket .org /sebferre /graph -fca/.

https://bitbucket.org/sebferre/graph-fca/

International Journal of Approximate Reasoning 164 (2024) 109059H.A. Ayats, P. Cellier and S. Ferré

similarity that use numerical values, even when applied to discrete structures. Concepts of neighbors also offer a local instance-based
view of concepts – with FCA objects playing the role of instances – compared to the global view of concept lattices that is common
with FCA.

In this section, we first define concepts of neighbors on standard FCA in order to explain the key ideas on a simple and well known
formalism (Section 4.1). We then generalize the definitions to the richer Graph-FCA case in order to accommodate more complex
relational data.

4.1. The FCA case

We first define the conceptual distance between two objects as the most specific concept that contains both of them.

Definition 10. Let 𝐾 = (𝑂, 𝐴, 𝐼) be a formal context, and 𝑢, 𝑣 ∈𝑂 be two objects in this context. The conceptual distance between
objects 𝑢 and 𝑣 is the concept 𝛿(𝑢, 𝑣) = (𝑋, 𝑌) s.t. 𝑌 = prop({𝑢, 𝑣}) = 𝐼(𝑢) ∩ 𝐼(𝑣), and 𝑋 = inst(𝑌).

Intuitively, the more similar the two objects are, the more specific the conceptual distance is. A more specific concept has
fewer objects and more attributes. Having more attributes means having more similarities. The objects in the concept extent can
be seen as in between the two objects, and hence fewer objects means a smaller distance. For example, in the formal context
presented in Section 3.1, the conceptual distance between Charles and Charlotte has an empty intension and an extension containing
all the objects, while the conceptual distance between Charles and Harry has for intension {𝑚𝑎𝑛, 𝑎𝑑𝑢𝑙𝑡, 𝑚𝑎𝑟𝑟𝑖𝑒𝑑} and for extension
{𝐶ℎ𝑎𝑟𝑙𝑒𝑠, 𝐻𝑎𝑟𝑟𝑦, 𝑊 𝑖𝑙𝑙𝑖𝑎𝑚}. It can be seen that the conceptual distance between Charles and Harry has three attributes in its intension
while the conceptual distance between Charles and Charlotte has none. Therefore, Charles is more similar to Harry than to Charlotte.
Reciprocally, the conceptual distance between Charles and Charlotte has seven objects in its extension, while the conceptual distance
between Charles and Harry has only three objects. Therefore, Charles is more distant to Charlotte than to Harry.

The duality between distance and similarity is here embodied in the duality between the extension and intension of a concept.
Actually, the conceptual distance between two objects is at the same time their conceptual similarity. The above definition satisfies
the properties of a distance if we take the partial order ≤ on concepts as distance order, and concept supremum ∨ as addition: i.e.,
for all objects 𝑢, 𝑣, 𝑤 ∈𝑂,

1. (positivity) 𝛿(𝑢, 𝑢) ≤ 𝛿(𝑢, 𝑣), (𝛿(𝑢, 𝑢) represents distance zero)

2. (symmetry) 𝛿(𝑢, 𝑣) = 𝛿(𝑣, 𝑢),
3. (triangular inequality) 𝛿(𝑢, 𝑣) ≤ 𝛿(𝑢, 𝑤) ∨ 𝛿(𝑤, 𝑣).

Because of the ordering being partial, it is common to have objects, say 𝑣 and 𝑤, that are at incomparable distances from 𝑢: i.e.,
𝛿(𝑢, 𝑣) ≰ 𝛿(𝑢, 𝑤) and 𝛿(𝑢, 𝑤) ≰ 𝛿(𝑢, 𝑣).

Numerical versions of distance and similarity can be derived from the conceptual distance by using the cardinal of the extension
or intension. Given the conceptual distance 𝛿(𝑢, 𝑣) = (𝑋, 𝑌):

• the extensional distance 𝑑(𝑢, 𝑣) = |𝑋| is the cardinal of the extension,

• the intensional similarity 𝑠𝑖𝑚(𝑢, 𝑣) = |𝑌 | is the cardinal of the intension.

Note that those numerical versions are degraded versions, as they flatten the partial ordering over conceptual distances to a total
ordering. This can lead to consider two objects as being at the same distance, whereas the conceptual distances are completely
different.

Definition 11. Let 𝐾 = (𝑂, 𝐴, 𝐼) be a formal context, and 𝑢 ∈ 𝑂 be an object. The concepts of neighbors of 𝑢 is the set of all
conceptual distances from 𝑢 to any other object in the context: C−N(𝑢) = {𝛿(𝑢, 𝑣) ∣ 𝑣 ∈𝑂}.

For example, in the formal context defined in 3.1, C−N(𝐶ℎ𝑎𝑟𝑙𝑜𝑡𝑡𝑒) contains four concepts. The first one has for intension
{𝑤𝑜𝑚𝑎𝑛, 𝑘𝑖𝑑} and for extension {𝐶ℎ𝑎𝑟𝑙𝑜𝑡𝑡𝑒}. Then there are two more general concepts: ({𝐶ℎ𝑎𝑟𝑙𝑜𝑡𝑡𝑒, 𝐷𝑖𝑎𝑛𝑎, 𝐾𝑎𝑡𝑒}, {𝑤𝑜𝑚𝑎𝑛}) and
({𝐶ℎ𝑎𝑟𝑙𝑜𝑡𝑡𝑒, 𝐺𝑒𝑜𝑟𝑔𝑒}, {𝑘𝑖𝑑}). Finally, there is the most general concept, with an empty intension and the whole set of objects as
extension.

Concepts of Neighbors C−N(𝑢) provide an instance-based view over the context, by partitioning the set of objects according to
their conceptual distance with 𝑢. Each concept of neighbors 𝛿 ∈ C−N(𝑢) induces the subset of objects 𝛿.𝑝𝑟𝑜𝑝𝑒𝑟 ∶= {𝑜 ∈𝑂 ∣ 𝛿(𝑢, 𝑜) = 𝛿},
i.e. the objects that are exactly at distance 𝛿 from 𝑢. This is a subset of the extension of 𝛿, called the proper extension of 𝛿.

4.2. The graph-FCA case

Concepts of neighbors are naturally extended to Graph-FCA, as the latter inherits the definitions and theorems of FCA. Con-

ceptual distances and concepts of neighbors are here graph concepts. A first benefit in Graph-FCA is that the similarity between
two objects is not only expressed in terms of common properties but also in terms of common relationships to similar ob-
6

jects, which in turn can have common properties and common relationships to farther objects, and so on. For instance, the

International Journal of Approximate Reasoning 164 (2024) 109059H.A. Ayats, P. Cellier and S. Ferré

Fig. 2. Concepts of Neighbors of Charlotte. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

conceptual distance between France and Spain could be the concept of countries that speak a Romance language, with PGP
[𝑥 ← 𝑐𝑜𝑢𝑛𝑡𝑟𝑦(𝑥), 𝑠𝑝𝑒𝑎𝑘𝑠(𝑥, 𝑦), 𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒(𝑦), 𝑟𝑜𝑚𝑎𝑛𝑐𝑒𝐿𝑎𝑛𝑔𝑢𝑎𝑔𝑒(𝑦)], with Italy and Portugal in the extension. A second benefit is that there
are not only concepts for individual objects but also for 𝑘-tuples of objects. This implies that it becomes possible to compare such
tuples of objects. For instance, the conceptual distance between pairs (𝐹𝑟𝑎𝑛𝑐𝑒, 𝑃𝑎𝑟𝑖𝑠) and (𝑈𝑘𝑟𝑎𝑖𝑛𝑒, 𝐾𝑦𝑖𝑣) is the concept whose intent
states the “has capital” relationship among other things, with PGP [𝑥, 𝑦 ← ℎ𝑎𝑠𝐶𝑎𝑝𝑖𝑡𝑎𝑙(𝑥, 𝑦), 𝑐𝑜𝑢𝑛𝑡𝑟𝑦(𝑥), 𝑐𝑖𝑡𝑦(𝑦)...], and whose extent
contains more (𝑐𝑜𝑢𝑛𝑡𝑟𝑦, 𝑐𝑖𝑡𝑦) pairs, e.g. (𝐼𝑡𝑎𝑙𝑦, 𝑅𝑜𝑚𝑎).

Definition 12. Let 𝐾 = (𝑂, 𝐴, 𝐼) be a graph context, and 𝑢, 𝑣 ∈ 𝑂𝑘, for some arity 𝑘. The conceptual distance between the two
𝑘-tuples of objects 𝑢 and 𝑣 is the 𝑘-concept 𝛿(𝑢, 𝑣) = (𝑅, 𝑄) s.t. 𝑄 = msq({𝑢, 𝑣) =𝑄(𝑢) ∩𝑃𝐺𝑃 𝑄(𝑣), and 𝑅 = ans(𝑄).

Like in FCA, this definition satisfies the properties of a distance, and numerical versions of distance and similarity can be derived
likewise.

Definition 13. Let 𝐾 = (𝑂, 𝐴, 𝐼) be a graph context, and 𝑢∈𝑂𝑘 be a 𝑘-tuple of objects, for some arity 𝑘. The concepts of neighbors

of 𝑢 is the set of all conceptual distances from 𝑢 to any other 𝑘-tuple in the context: C−N(𝑢) = {𝛿(𝑢, 𝑣) ∣ 𝑣∈𝑂𝑘}.

This again induces a partition over the set of 𝑘-tuples of objects, where each part is the proper extension 𝛿.𝑝𝑟𝑜𝑝𝑒𝑟 of the corre-

sponding conceptual distance 𝛿.

Fig. 2 presents the five concepts of neighbors of Charlotte in the graph context presented in Fig. 1 (a). On the right, the extensions
are presented as a Venn diagram, and on the left the intensions are expressed in plain English for simplicity. The first concept has
for intension the whole graph centered on Charlotte and has only Charlotte in its extension. Then there are two larger concepts, one
containing the children of Kate and William (Charlotte and George), and another one containing the women. Then there is an even
larger concept containing the people having a father, a mother and a sibling (Harry, William, Charlotte, and George). Finally, there
is the top concept, having an empty intension and all objects as extension. For each concept of neighbors, the objects of the proper
extension are displayed in the same color as the concept ellipse. It can be seen that the proper extension of a concept is made of the
objects in the extension that are not in sub-concepts. This color-coding materializes the partition of objects by concepts of neighbors.
When two objects are in the same proper extension, e.g. Harry and William, this means that they are indistinguishable relative to
the chosen object. The Venn diagram shows well the fact that the concepts of neighbors are only partially ordered. For instance,
Concept (3) is a sub-concept of Concept (4) but is incomparable with Concept (2). The inclusion of (3) in (4) means that George from
Concept (3) is closer to Charlotte than Harry from Concept (4) is: he has a father, a mother and a sibling, like Harry, but he also has
the same parents as Charlotte, unlike Harry. The incomparability of (3) and (2) means that George and Diana are similar to Charlotte
for incomparable reasons: George has the same parents as Charlotte, while Diana has the same gender as Charlotte. Such distinctions
cannot be made with totally ordered distances like numerical ones.

5. Algorithms

We here describe an efficient and anytime algorithm for the computation of concepts of neighbors. The algorithm inputs are
a graph context 𝐾 = (𝑂, 𝐴, 𝐼), and a 𝑘-tuple of objects 𝑢 ∈ 𝑂𝑘, called the query instance. The algorithm output is the collection of
concepts of neighbors C−N(𝑢), with for each conceptual distance 𝛿 ∈ C−N(𝑢) the concept intension 𝛿.𝑖𝑛𝑡, the concept extension 𝛿.𝑒𝑥𝑡,
and the proper extension 𝛿.𝑝𝑟𝑜𝑝𝑒𝑟. The three types of information play an important role in applications of Concepts of Neighbors
(see Section 6). For practical reasons, the algorithm can also take as input a subset of the 𝑘-tuples of objects 𝑉 ⊆ 𝑂𝑘, called candidate
instances, to restrict the set of considered neighbors of the query instance. The extensions and proper extensions of concepts of
neighbors are therefore subsets of 𝑉 .

A first approach to compute concepts of neighbors would be to follow their definition, i.e. to compute the conceptual distance
from the query instance 𝑢 to every candidate instance 𝑣 ∈ 𝑉 . This is the approach followed by work using distance measures on
symbolic data [20]. It here requires performing two complex operations for each candidate instance: to compute the most specific
7

query 𝑄 between them, and to compute the set of answers 𝑅 of that most specific query 𝑄. This does not scale to large sets of

International Journal of Approximate Reasoning 164 (2024) 109059H.A. Ayats, P. Cellier and S. Ferré

candidate instances. This is also inefficient because in general each concept of neighbor will be computed many times, |𝛿.𝑝𝑟𝑜𝑝𝑒𝑟|
times to be exact. A second approach would be to start with the concept 𝛿(𝑢, 𝑢) whose intension is the graph description 𝑄(𝑢) of the
query instance, and to explore the space of more general concepts by generalizing the intension. This is the approach followed by
query relaxation [14]. It here requires to repeatedly apply minimal generalizations to PGPs, e.g. removing an edge, and to compute
the set of answers of the generalized PGPs. If the generalized PGP covers additional instances, then a new conceptual distance
has been found, and the additional instances make for its proper extension. The first problem is that the generalization space is
combinatorial in the size of the initial PGP, and in the case of knowledge graphs, the initial PGP often contains the whole graph
context. Moreover, the set of answers has to be computed for each generalized PGP, and it cannot be derived from previous PGPs as
their extension is smaller.

We propose a third approach to compute concepts of neighbors, an approach that factorizes the computation of the most specific
queries across the instances, and that factorizes the computation of sets of answers across generalized PGPs. The general idea is
to explore the generalization space top-down, starting with the empty PGP, and to massively prune it by maintaining and refining
a partition of the instances that converges towards the proper extensions. By exploring the generalization space top-down, i.e. by
specializing PGPs, the answers of a specialized PGP 𝑄2 can be computed incrementally from the answers of its parent PGP 𝑄1.
Indeed, the answers of 𝑄2 are a subset of the answers of 𝑄1 because of the Galois connection between PGPs and sets of object tuples.
Moreover, for every concept of neighbors, there is a single path in the top-down exploration that leads to its intension, so that the
most specific queries are computed only once, whatever the size of the proper extension.

In this section, we first describe the partitioning algorithm that explores the generalization space top-down to compute concepts
of neighbors (Section 5.1). We then introduce an essential optimization in the computation of sets of answers by introducing the lazy
join algorithm (Section 5.2). Those two algorithms have been previously published in [14], in the context of query relaxation. We
also present CONNOR, an implementation as a Java library (Section 5.3).

5.1. Iterative partitioning of instances into concepts of neighbors

At any stage of the algorithm, the set of candidate instances is partitioned in a set of pre-concepts of neighbors (pre-concepts in
short), where each pre-concept is made of a PGP 𝑄𝑙 and its answers 𝑅𝑙 like a concept, except that the PGP is not necessarily the
most specific query for those answers. Each pre-concept also comes with a subset of answers 𝑉𝑙 such that the collection {𝑉𝑙}𝑙 defines
a partition of the set of candidate instances, a match-set 𝑀𝑙 that is the set of answers extended to all variables occurring in the PGP
graph pattern, and a set of incidences 𝐼𝑙 to be used as PGP specializations. The match-set is useful for the incremental computation of
sets of answers of specialized PGPs, and the incidences are useful to control the specialization of PGPs. We define match-sets before
formally defining pre-concepts.

Definition 14. Let 𝐾 = (𝑂, 𝐴, 𝐼) be a graph context, and  an infinite set of variables. A match-set is a pair 𝑀 = (𝑥, 𝑅) ∈ 𝑘 ×(𝑂𝑘),
for some arity 𝑘. It defines a set of mappings from the 𝑘 variables in 𝑥 to objects of the context: 𝑥 = dom(𝑀) is called the domain of
the match-set, and 𝑅 = rel(𝑀) is called the relation of the match-set. Match-sets are equipped with two operations from relational
algebra [1]:

• the projection 𝜋𝑦 𝑀 of a match-set on a sub-tuple 𝑦 of the match-set variables;

• the (natural) join 𝑀1 ⋈𝑀2 of two match-sets.

Definition 15. Let 𝐾 be a graph concept, 𝑢 be the query instance with arity 𝑘, and 𝑉 ⊆ 𝑂𝑘 be the set of candidate instances. A
partition of the set of candidate instances is a collection {𝐶𝑙}𝑙 of pre-concepts (of neighbors), where each pre-concept is a structure
𝐶𝑙 = (𝑄𝑙, 𝑅𝑙, 𝑉𝑙, 𝑀𝑙, 𝐻𝑙), s.t.:

• 𝑄𝑙 = [𝑢← 𝑃𝑙] is a 𝑘-PGP that is a generalization of 𝑄(𝑢), with 𝑥𝑙 being the tuple of all variables occurring in 𝑢 or in 𝑃𝑙 ;
• 𝑅𝑙 = ans(𝑄𝑙) ∩ 𝑉 is the set of answers of 𝑄𝑙 in 𝑉 ;

• 𝑉𝑙 ⊆ 𝑅𝑙 is a subset of answers such that the collection {𝑉𝑙}𝑙 forms a partition of 𝑉 ;

• 𝑀𝑙 = (𝑥𝑙, ans((𝑥𝑙, 𝑃𝑙))) is the match-set containing all matchings of the pattern 𝑃𝑙 on the graph context;

• 𝐼𝑙 ⊆ 𝐼 is a set of incidences from the description of the query instance that remain available for specializing 𝑄𝑙 .

As we explore the generalization space of the description of 𝑢, we simply use objects from that description as variables in the
PGPs. A pre-concept becomes a concept of neighbors when 𝐼𝑙 gets empty, i.e. when the pre-concept cannot be specialized further.
In this case, the pair (𝑄𝑙, 𝑅𝑙) is a concept of neighbors (filtered by 𝑉), and 𝑉𝑙 is its proper extension. When 𝐼𝑙 is not empty, 𝑉𝑙 may
be a union of proper extensions (lack of discrimination), and 𝑄𝑙 is not necessarily the most specific query of instances in 𝑉𝑙 (lack of
precision in the conceptual similarity). This implies an overestimate of the distance, and an underestimate of the similarity, for some
instances in 𝑉𝑙 . The specialization process aims at making pre-concepts converge to concepts of neighbors, going through increasingly
precise estimates of distance and similarity.

Initially, there is a single pre-concept, the initial pre-concept that uses the empty PGP and that contains all candidate instances.
8

Definition 16. The initial pre-concept is the pre-concept 𝐶init s.t.:

International Journal of Approximate Reasoning 164 (2024) 109059H.A. Ayats, P. Cellier and S. Ferré

Algorithm 1 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛(𝐾, 𝑢, 𝑉).
Require: A graph context 𝐾 = (𝑂, 𝐴, 𝐼)
Require: An arity 𝑘 > 0, a query instance 𝑢∈𝑂𝑘 , and candidate instances 𝑉 ⊆ 𝑂𝑘
Require: An optional timeout

Ensure: A collection of pre-concepts  partitioning 𝑉 w.r.t conceptual distance to 𝑢
1:  ← {𝐶init}
2: while no timeout and there is a pre-concept 𝐶𝑙 ∈  such that 𝐼𝑙 ≠ ∅ do

3: pick some (𝑤, 𝑎) ∈ 𝐼𝑙 that is connected to 𝑢 in 𝑄𝑙
4: 𝑄𝑖 ← [𝑢← 𝑃𝑙 ∪ {(𝑤, 𝑎)}]
5: 𝑀𝑖 ←𝑀𝑙 ⋈𝑀(𝑤,𝑎)
6: 𝑅𝑖 ← rel(𝜋𝑢 𝑀𝑖)
7: 𝑉𝑖 ← 𝑉𝑙 ∩𝑅𝑖
8: 𝑉𝑗 ← 𝑉𝑙 ⧵ 𝑉𝑖
9: 𝐼𝑖𝑗 = 𝐼𝑙 ⧵ {(𝑤, 𝑎)}

10:  ←  ⧵ {𝐶𝑙}
11:  ←  ∪ {𝐶𝑖}, if 𝑉𝑖 ≠ ∅, where 𝐶𝑖 = (𝑄𝑖, 𝑅𝑖, 𝑉𝑖, 𝑀𝑖, 𝐼𝑖𝑗)
12:  ←  ∪ {𝐶𝑗}, if 𝑉𝑗 ≠ ∅, where 𝐶𝑗 = (𝑄𝑙, 𝑅𝑙, 𝑉𝑗 , 𝑀𝑙, 𝐼𝑖𝑗)
13: end while

• 𝑄𝑖𝑛𝑖𝑡 = [𝑢← ∅] is the empty PGP (𝑥𝑖𝑛𝑖𝑡 = 𝑢);
• 𝑅𝑖𝑛𝑖𝑡 = ans(𝑄𝑖𝑛𝑖𝑡) ∩ 𝑉 = 𝑉 is the set of all candidate instances;

• 𝑉𝑖𝑛𝑖𝑡 = 𝑉 is the set of all candidate instances;

• 𝑀𝑖𝑛𝑖𝑡 = (𝑢, 𝑉);
• 𝐼𝑖𝑛𝑖𝑡 = 𝐼 is the set of all incidences from the graph context.

Each pre-concept 𝐶𝑙 s.t. 𝐼𝑙 ≠ ∅ may be split in two pre-concepts 𝐶𝑖 and 𝐶𝑗 by using an incidence (𝑤, 𝑎) ∈ 𝐼𝑙 to discriminate among
instances 𝑉𝑙 those that match the incidence from those that do not.

Definition 17. The specialization of a pre-concept 𝐶𝑙 by an incidence (𝑤,𝑎) ∈ 𝐼𝑙 leads to two new pre-concepts 𝐶𝑖 and 𝐶𝑗 that replace
𝐶𝑙 in the partition, and that are defined as follows (the definitions of 𝑅 and 𝑀 follow from the definition of 𝑄):

𝑄𝑖 = [𝑢← 𝑃𝑙 ∪ {(𝑤,𝑎)}] 𝑄𝑗 =𝑄𝑙

𝑉𝑖 = 𝑉𝑙 ∩𝑅𝑖 𝑉𝑗 = 𝑉𝑙 ⧵𝑅𝑖 = 𝑉𝑙 ⧵ 𝑉𝑖

𝐼𝑖 = 𝐼𝑙 ⧵ {(𝑤,𝑎)} 𝐼𝑗 = 𝐼𝑙 ⧵ {(𝑤,𝑎)}

Pre-concept 𝐶𝑖 is a specialization of 𝐶𝑙 , by the addition of an incidence to the query pattern. This leads in general to a smaller set
of answers 𝑅𝑖, and hence a smaller subset of candidate instances 𝑉𝑖. Pre-concept 𝐶𝑗 is an update of concept 𝐶𝑙 , where the candidate
instances 𝑉𝑗 is the part of 𝑉𝑙 that is not selected by 𝑉𝑖. In both pre-concepts, the chosen incidence is discarded so that it is not
considered any more for the specialization of the new pre-concepts. After a specialization, we still have a partition of 𝑉 because
{𝑉𝑖, 𝑉𝑗} is a partition of 𝑉𝑙 . In general, we get a finer partition with two smaller parts, but it is also possible that one of the parts
is empty, in which case the partition is unchanged. For instance, if the chosen incidence is disconnected from 𝑢 in 𝑄𝑙 , then it has
no effect on answers and 𝑉𝑖 = 𝑉𝑙 . Therefore, only connected incidences should be chosen for effective specialization. However, even
connected incidences can lead to 𝑉𝑖 = 𝑉𝑙 , depending on regularities in data.

According to the above definition, the cost of specializing a pre-concept looks very small. It amounts to add an incidence to a PGP,
to perform basic set operations on sets of instances, and to remove an element from the set of incidences. However, the computation
of 𝑉𝑖 and 𝑉𝑗 requires the set of answers 𝑅𝑖 = 𝑎𝑛𝑠(𝑄𝑖) of the specialized PGP. This computation can be made incremental by relying on
the match-set of pre-concepts. The match-set 𝑀 of a graph pattern 𝑃 is equal to the join of the match-sets of all incidences (𝑤, 𝑎) ∈ 𝑃 :

𝑀 = ⋈(𝑤,𝑎)∈𝑃 𝑀(𝑤,𝑎)

where 𝑀(𝑤,𝑎) = (𝑤,ans([𝑤← 𝑎(𝑤)]))

As the join operator is associative and commutative, the match-set of the specialized PGP can be computed incrementally from the
parent PGP.

𝑀𝑖 =𝑀𝑙 ⋈𝑀(𝑤,𝑎)

Finally, the set of answers is simply the projection of the match-set on the projected variables.

𝑅𝑖 = rel(𝜋𝑢 𝑀𝑖)

Algorithm 1 details the partitioning algorithm. Given a graph context, a query instance, and a set of candidate instances, it starts
with a single pre-concept, the initial pre-concept (Definition 16). It then iteratively applies specialization steps (Definition 17) to
pre-concepts in order to refine the partition. The process runs until no specialization is possible or a timeout has been attained. This
9

timeout is optional, but it has the advantage to make the algorithm anytime (more on this below). Fig. 3 shows an execution trace as

International Journal of Approximate Reasoning 164 (2024) 109059H.A. Ayats, P. Cellier and S. Ferré

Fig. 3. Trace of the partition algorithm applied on the graph context in Fig. 1 with 𝑢 = 𝐶ℎ𝑎𝑟𝑙𝑜𝑡𝑡𝑒 and 𝑉 = 𝑂. Pre-concepts are shown via their extension, with the
proper extension on the left and the remainder on the right, if any. Objects are abbreviated by their initial, except for Charlotte (A). The same abbreviations in
lowercase are used as variables in the incidences used for pre-concept specialization. Boxed pre-concepts at the leaves are the concepts of neighbors, and the number
at their right is the extensional numerical distance.

a binary tree of pre-concepts. It represents the computation of the concepts of neighbors of Charlotte (see Fig. 2): 𝑢 = 𝐶ℎ𝑎𝑟𝑙𝑜𝑡𝑡𝑒 and
𝑉 = 𝑂. The initial pre-concept contains the seven persons in the context, from Charles (C) to Charlotte (A). The first specialization
uses the incidence 𝑤𝑜𝑚𝑎𝑛(𝐶ℎ𝑎𝑟𝑙𝑜𝑡𝑡𝑒), separating the women (Diana, Kate and Charlotte) on the left from the men on the right. Those
women remain in the extension of the concept on the right but no more in the proper extent. The concept on the left is further split
in two pre-concepts: woman with a parent on the left (A), and woman without a parent on the right (DK). Pre-concept (A) cannot be
split further, although incidences can still be added to it. From pre-concept (DK), all remaining incidences lead to an empty extension
because Diana and Kate have nothing else in common with Charlotte. The boxed pre-concepts at the leaves are the results of the
algorithm. Their intent is the set of incidences that label the path from the root to this pre-concept. They coincide with the concepts
of neighbors shown in Fig. 2.

Discussion The algorithm may be incomplete in the sense that some concepts of neighbors may be missed, hence moving some
instances at a greater conceptual distance than they are actually. The cause is that the generated graph patterns 𝑃𝑙 are constrained
to be subsets of 𝐼 , they cannot be arbitrary graph patterns that have a matching occurrence in 𝐼 . Suppose 𝑢 is the query instance,
and that 𝐼 contains {𝑝(𝑢, 𝑤), 𝑎(𝑤), 𝑏(𝑤)}. The algorithm can generate the PGPs 𝑄𝑎𝑏 = [𝑢 ← 𝑝(𝑢, 𝑤), 𝑎(𝑤), 𝑏(𝑤)] (“has a 𝑝 that is a 𝑎 and
a 𝑏”), 𝑄𝑎 = [𝑢 ← 𝑝(𝑢, 𝑤), 𝑎(𝑤)] and 𝑄𝑏 = [𝑢 ← 𝑝(𝑢, 𝑤), 𝑏(𝑤)], but not the PGP 𝑄∗ = [𝑢 ← 𝑝(𝑢, 𝑤1), 𝑎(𝑤1), 𝑝(𝑢, 𝑤2), 𝑏(𝑤2)] (“has a 𝑝 that is a
𝑎, and has a 𝑝 – the same or another – that is a 𝑏”). Note that 𝑄∗ is more general than 𝑄𝑎𝑏 and more specific than 𝑄𝑎 and 𝑄𝑏. If
some candidate instance 𝑣 matches 𝑄∗ but not 𝑄𝑎𝑏, then it will belong to the concept of either 𝑄𝑎 or 𝑄𝑏, depending on which of
𝑎(𝑤) or 𝑏(𝑤) is chosen first. In order to recover completeness, we should allow for the duplication of a variable in a graph pattern
(e.g., 𝑤 ⇝ 𝑤1, 𝑤2), which would actually make the search space infinite. This simplification only entails an approximation in the
computation of the conceptual distances, and it brings not only a benefit in terms of tractability, but also a benefit in terms of
interpretability because the intensions of concepts of neighbors are subgraphs of the description of the query instance.

The partitioning algorithm always terminates because the set 𝐼𝑙 decreases at each split in both concepts 𝐶𝑖 and 𝐶𝑗 . Moreover,
the number of pre-concepts is bounded by the number of candidate instances at any step because every candidate instance belongs
to the proper extension of a single pre-concept, by construction. This is remarkable because the search space is exponential in the
number of incidences. Each candidate instance 𝑣 ∈ 𝑉 is forced to move down along only one path, so that among the many paths
that goes from 𝑄𝑖𝑛𝑖𝑡 to 𝛿(𝑢, 𝑣), only one path is actually followed. Despite those good properties, the full partitioning can still take a
lot of time in the case of large graph contexts. This is why we make our algorithm anytime by adding a timeout parameter. This is
justified because a valid partition of candidate instances by a collection of pre-concepts is available at all time. If the algorithm is
stopped before its completion, one simply gets a coarser partition, and an overestimate of the conceptual distances to each instance.
Previous experiments [14] have shown that the algorithm has the good property to output more than half of the concepts in a small
proportion of the total runtime.

5.2. Lazy join of match-sets

The partitioning algorithm of the previous section has good properties w.r.t. the exploration of the search space, but it hides a
bottleneck in the computation of match-sets. Suppose the current pre-concept 𝐶0 where 𝑄0 = [𝑢 ← 𝑓𝑖𝑙𝑚(𝑢)] (“is a film”), and where
the match-set 𝑀0 has a matching for each unique film. Specializing 𝐶0 by adding an actor to the film (incidence 𝑎𝑐𝑡𝑜𝑟(𝑢, 𝑤1)) leads
to the PGP 𝑄1 = [𝑢 ← 𝑓𝑖𝑙𝑚(𝑢), 𝑎𝑐𝑡𝑜𝑟(𝑢, 𝑤1)] and to the match-set 𝑀1 =𝑀0 ⋈𝑀𝑎𝑐𝑡𝑜𝑟(𝑢,𝑤1), which has a matching for each (film, actor)
pair. The bottleneck comes when adding an incidence 𝑎𝑐𝑡𝑜𝑟(𝑢, 𝑤𝑖) for all actors of the query instance, as this entails the successive
joins 𝑀0 ⋈𝑀𝑎𝑐𝑡𝑜𝑟(𝑢,𝑤1) … ⋈𝑀𝑎𝑐𝑡𝑜𝑟(𝑢,𝑤𝑛). Assuming there are 𝑁 films and 𝑛 actors per film, each join results in a 𝑛-fold increase of the
10

match-set, and the join chain results in a 𝑛𝑛-fold increase. For 1000 films related to 10 actors each, it amounts to 1013 matchings in

International Journal of Approximate Reasoning 164 (2024) 109059H.A. Ayats, P. Cellier and S. Ferré

Algorithm 2 𝐿𝑎𝑧𝑦𝐽𝑜𝑖𝑛(𝑇 , 𝑖, 𝑖∗, 𝐷∗, 𝑀∗, Δ∗).
Require: a match-tree 𝑇 , a current incidence 𝑖 in 𝑇 labeled with (𝐷, 𝑀, Δ),

and a new incidence 𝑖∗ labeled with (𝐷∗ , 𝑀∗ , Δ∗)
Ensure: two sets of variables Δ+ , Δ−

1: Δ+ ← ∅; Δ− ← ∅
2: for all 𝑖𝑐 ∈ children(𝑖), labeled with (𝐷𝑐, 𝑀𝑐, Δ𝑐) do

3: Δ+
𝑐
, Δ−

𝑐
← LazyJoin(𝑇 , 𝑖𝑐 , 𝑖∗ , 𝐷∗ , 𝑀∗ , Δ∗) // recursive call on each child node

4: Δ+ ←Δ+ ∪Δ+
𝑐
; Δ− ←Δ− ∪Δ−

𝑐

5: 𝑀 ←𝑀⨝𝜋Δ𝑐 𝑀𝑐 , if Δ𝑐 or 𝑀𝑐 was modified // update of local join

6: end for

7: if 𝐷 ∩Δ∗ ≠ ∅ then // if this node defines a variable of the new element

8: if 𝑖∗ not yet inserted in 𝑇 then // insert new node, if not yet inserted

9: Δ− ←Δ− ∪ (Δ∗ ⧵𝐷); 𝑀 ←𝑀⨝𝜋Δ∗ 𝑀∗; parent(𝑖∗) ← 𝑖

10: else

11: Δ+ ←Δ+ ∪ (Δ∗ ∩𝐷)
12: end if

13: end if

14: Δ+ ←Δ+ ⧵Δ−

15: Δ− ←Δ− ⧵Δ+

16: Δ ←Δ ∪Δ+ ∪Δ− // update Δ
17: return Δ+ , Δ−

𝑀𝑛! The bottleneck lies in the exponential growth of the size of match-sets and their computation time. It is actually possible to do
better because the expected end result is the set of answers 𝑅 = 𝜋𝑢 𝑀 , whose size is bounded by the number of candidate instances.

We here describe a compact representation of a match-set 𝑀 , called a match-tree, that is made of several local joins instead of the
global join. It supports the incremental computation of match-sets assumed by the partitioning algorithm, and it performs joins in a
local and lazy way to keep the representation as compact as possible.

A match-set 𝑀𝑙 results from the set of incidences 𝑃𝑙 . A match-tree is based on a tree structure over those incidences.

Definition 18. A match-tree is a rooted n-ary tree 𝑇 where each node is an incidence 𝑖 = (𝑤, 𝑎) and is labeled by a tuple (𝐷, 𝑀, Δ)
where3:

• 𝐷 ⊆𝑤 is a subset of the variables used by incidence 𝑖;

• 𝑀 is the local match-set s.t. 𝑤⊆ dom(𝑀);
• Δ ⊆ dom(𝑀) is the subdomain that is useful to the node’s ancestors.

For each incidence, 𝐷 is the set of variables defined by the incidence when added to a pre-concept. For example, starting from
[𝑢 ← 𝑓𝑖𝑙𝑚(𝑢)], incidence 𝑎𝑐𝑡𝑜𝑟(𝑢, 𝑤1) defines the variable 𝑤1. The local match-set 𝑀 is a local join, i.e. a join over a subset of the
incidences inserted so far. Joining all local match-sets would result in the global join. In the example, for incidence 𝑎𝑐𝑡𝑜𝑟(𝑢, 𝑤1), 𝑀 is
𝑀𝑎𝑐𝑡𝑜𝑟(𝑢,𝑤1) alone, i.e. a primitive match-set. Finally, Δ tells on which variables the local match-set can be projected without loosing
information for the computation of the set of answers 𝑅. In the example, Δ = {𝑢}, only the films having an actor matter, not the
particular actors.

In order to use match-trees in place of match-sets in the partitioning algorithm, we have to define the following operations on
them: (a) the initial match-tree 𝑇𝑖𝑛𝑖𝑡 to be used in the initial pre-concept, (b) the join between a match-tree 𝑇𝑙 and a new incidence
whose result must be a match-tree 𝑇𝑖, and (c) the projection of a match-tree on variables 𝑢 to get the set of answers 𝑅𝑖.

The initial match-tree 𝑇𝑖𝑛𝑖𝑡 is used in the initial pre-concept in place of the initial match-set. It has a single root node that is a
pseudo-incidence 𝑖 = ⊤(𝑢) and that is labeled with (𝑢, 𝑀𝑖𝑛𝑖𝑡, 𝑢).

The line 𝑀𝑖 ←𝑀𝑙 ⋈𝑀(𝑤,𝑎) doing the incremental join in Algorithm 1 is replaced by

𝑇𝑖 ← LazyJoin(𝑇𝑙,⊤(𝑢), (𝑤,𝑎),𝐷∗,𝑀∗,Δ∗)

where LazyJoin is defined by Algorithm 2. It is based on a recursive traversal of the match-tree (lines 2-3) starting at the root ⊤(𝑢),
inserting the new incidence 𝑖∗ = (𝑤, 𝑎) at an appropriate place (line 9), and updating local match-sets accordingly (line 5). The new
incidence is labeled as follows, where for recall 𝑥𝑙 is the tuple of all variables in the current pattern 𝑃𝑙 :

𝐷∗ =𝑤 ⧵ 𝑥𝑙, Δ∗ =𝑤 ∩ 𝑥𝑙, 𝑀∗ =𝑀(𝑤,𝑎).

Considering the variables Δ∗ of the new incidence that are already in the match-set, the new incidence 𝑖∗ is inserted as a child of the
first visited node whose defined variables 𝐷 contains at least one variable in Δ∗ (lines 7-9). The common variables between 𝐷 and
Δ∗ provide a connection between the current pattern and the new incidence. If some variables in Δ∗ are not defined at the insertion
node, they are returned and propagated through Δ− as missing variables for join (line 4, 9, 17), and they are propagated from the
11

3 By abuse of notation, we allow tuples of variables to be used as sets of variables.

International Journal of Approximate Reasoning 164 (2024) 109059H.A. Ayats, P. Cellier and S. Ferré

Fig. 4. Match-tree before and after lazy join with incidence 𝑖∗ = 𝑝𝑎𝑟𝑒𝑛𝑡(𝑔, 𝑘).

incidences that define them through Δ+ as available variables for join (line 4, 11, 17). Those missing and available variables are
added to the Δ+/Δ− of incidences upward (line 16), except when they meet each other (lines 14-15).

Finally, the set of answers 𝑅 corresponding to a match-tree 𝑇 is rel(𝜋𝑢 𝑀⊤), where 𝑀⊤ is the local match-set of the root.

Fig. 4 shows the effect of the lazy join of the new incidence 𝑖∗ = 𝑝𝑎𝑟𝑒𝑛𝑡(𝑔, 𝑘) at the pre-concept with proper extension WHG in
Fig. 3. The input match-tree is on the left, and the output match-tree is on the right. The input match-tree corresponds to the PGP

[𝑎←𝑚𝑎𝑛(𝑤),𝑤𝑜𝑚𝑎𝑛(𝑘), 𝑝𝑎𝑟𝑒𝑛𝑡(𝑎,𝑤), 𝑝𝑎𝑟𝑒𝑛𝑡(𝑎, 𝑘), 𝑝𝑎𝑟𝑒𝑛𝑡(𝑔,𝑤)],

and it is hence the result of 5 successive lazy joins, each introducing an incidence. Changes (shown in bold on the right side) are
propagated from the two incidences that define 𝑔 and 𝑘 (see 𝐷), and the new leaf is inserted under one of the two nodes as a
child (here, under the node defining 𝑘). The insertion of the other incidences, which led to the match-tree on the left, changes only
one path in the match-tree for each incidence because they do not introduce a cycle. In Algorithm 2, the computation of Δ+, Δ− is
used to correctly handle cycles. They are sets of variables of the new incidence 𝑖∗ that are not in the match-set of its parent (𝑔 in
the example), and hence need to be joined with distant nodes in the match-tree. Δ− propagates up the tree branch of the parent
(incidence 𝑝𝑎𝑟𝑒𝑛𝑡(𝑎, 𝑘) in Fig. 4), and Δ+ propagates up the tree branch of distant incidences (incidence 𝑝𝑎𝑟𝑒𝑛𝑡(𝑔, 𝑤)). When they meet
at their common ancestor (incidence ⊤(𝑎) here), the distant join can be done, and their propagation stops.

Discussion In the example on films, we observe that each new element 𝑖∗ = 𝑎𝑐𝑡𝑜𝑟(𝑢, 𝑤𝑖) only entails the computation 𝑀⨝𝜋𝑢 𝑀𝑖∗ ,
i.e. the intersection between the current set of films, and the set of films having an actor. The final match-tree therefore contains a
match-set at the root whose size is 𝑁 , and 𝑛 match-sets at the leaves whose size is 𝑁𝑛 (one for each actor). The total size is therefore
in the order of 𝑁𝑛2 matchings instead of 𝑁𝑛𝑛. For 1000 films related to 10 actors each, it amounts to 105 instead of 1013! Moreover,
the match-sets have 1 or 2 variables in their domain instead of (𝑛 + 1) for the global join.

5.3. Implementation

The main implementation of those algorithms is CONNOR, a Java library for the computation of concepts of neighbors. This
library is a free and open-source software,4 based on Apache Jena,5 a well-known Java library for representing and reasoning on
the RDF graphs of the Semantic Web. As presented in Section 3.2, there is a correspondence between RDF graphs and Graph-FCA
contexts with only unary and binary relations. This is the case handled by CONNOR: graph contexts are represented as RDF graphs
and handled with the Jena library. This library gives a comprehensive interface for the handling of graph contexts (with the class

ConnorModel) and concepts of neighbors (class ConceptOfNeighbour), and provides classes encapsulating the algorithms for the
efficient computation of concepts of neighbors (classes ConnorPartition and ConnorThread). A full presentation of CONNOR
with usage examples can be found in [15].

This implementation takes into account the domain knowledge expressed as RDF Schema (RDFS) axioms [38], by applying the
algorithms on the saturated version of the RDF graph. For instance, if there is an incidence 𝑐(𝑜) where 𝑐 is an RDFS class, and 𝑑 is
known as a superclass of 𝑐 in the RDF Schema axioms, then 𝑑(𝑜) is also considered as an incidence. This is possible because RDFS
can only entail a finite set of facts [41].

6. Applications

This section presents different applications of Concepts of Neighbors. As shown above, the computation of concepts of neighbors is
a generic method for computing distances between entities in relational datasets. The potential applications are therefore numerous
and varied. As of today, three different applications have been developed and are detailed in this section: (1) query relaxation to find

4 Accessible here: https://gitlab .inria .fr /hayats /CONNOR.
12

5 https://jena .apache .org/.

https://gitlab.inria.fr/hayats/CONNOR
https://jena.apache.org/

International Journal of Approximate Reasoning 164 (2024) 109059H.A. Ayats, P. Cellier and S. Ferré

approximate answering in KGs, (2) knowledge graph completion to infer missing facts in KGs, and (3) relation extraction to populate
KGs from text.

6.1. Query relaxation

Query relaxation has been proposed as a way to find approximate answers to user queries [42]. Approximate answers are useful
when the user query has too few answers or no answers at all. The lack of answers can have various reasons. Either the user has
insufficient knowledge about the data schema, or the data is incomplete or noisy, or the query is too stringent. Query relaxation
consists in applying transformations to the user query in order to relax constraints, and make it more general so that it produces
more answers. A major issue in query relaxation is that the number of relaxed queries grows in a combinatorial way with the number
of relaxation steps and the size of the query.

This section is a summary of a previous work [14], with formal notations made consistent with the previous sections. We first
give a specific related work on the query relaxation task. Then we show how Concepts of Neighbors can be applied to improve the
efficiency of query relaxation. Finally, we present experiments showing that, despite the higher efficiency, our approach does not
trade quality for efficiency as it produces the same results as query relaxation.

6.1.1. Related work

The existing approaches for query relaxation consist in enumerating relaxed queries up to some edit distance, and to evaluate
each relaxed query, from the more specific to the more general, in order to get new approximate answers [43–45]. The main issue
with such an enumeration-based approach is that the number of relaxed queries grows in a combinatorial way with the edit distance,
and the size of the query. Moreover, many relaxed queries do not yield any new answer because they have the same answers as more
specific relaxed queries. Huang et al. [44] use a similarity score in order to have a better ranking for the evaluation of relaxed queries.
Hurtado et al. [43] optimize the evaluation of relaxed queries by directly computing their proper answers. New SPARQL clauses,

RELAX and APPROX [45], have also been proposed to restrict relaxation to a small subset of the query, and hence reduce the number
of relaxed queries. However, this requires from the user to anticipate where relaxation can be useful. The above approaches [43,44]

put some limitations on the relaxation steps that can be applied. Triple patterns can be generalized by relaxation according to RDFS
inference but generally can not be removed from the query. URIs and literals cannot always be replaced by variables, which limits
the generalization capabilities. Other approaches [46,47] present powerful relaxation frameworks, but they do not evaluate their
efficiency or only generate a few relaxed queries.

6.1.2. Application of concepts of neighbors to query relaxation

Query relaxation takes as input an RDF graph and a query𝑄, and returns a (partially) ranked list of approximate answers. We have
seen above how an RDF graph can be mapped to a graph context, mapping RDF nodes to objects, classes and properties to attributes,
and triples to incidences. Existing work on query relaxation almost exclusively considers conjunctive queries, which are equivalent
to our projected graph patterns (PGP). The problem of query relaxation can therefore be formulated in the framework of Graph-FCA.
Given a graph context 𝐾 = (𝑂, 𝐴, 𝐼) and a PGP 𝑄 = [𝑥← 𝑃], an approximate answer of 𝑄 in 𝐾 is a tuple of objects 𝑣 that is an answer
of a generalized query 𝑄′, i.e. 𝑄′ ⊆𝑃𝐺𝑃 𝑄 ∧ 𝑣 ∈ ans(𝑄′). By Definition 7 of ans, this is equivalent to say 𝑄′ ⊆𝑃𝐺𝑃 𝑄 ∧𝑄′ ⊆𝑃𝐺𝑃 𝑄(𝑣),
which implies that 𝑄′ ⊆𝑃𝐺𝑃 𝑄 ∩𝑃𝐺𝑃 𝑄(𝑣). Among the many possible relaxed queries 𝑄′, one prefers the least relaxed query, hence
the most specific relaxed query 𝑄′ =𝑄 ∩𝑃𝐺𝑃 𝑄(𝑣).

We can make a concrete instance out of the query 𝑄 = [𝑥← 𝑃] by making a new object out of each variable, and a new incidence
out of each pattern element, so that we get an augmented graph context where the projected variables 𝑥 become a new instance 𝑢.
Now, the relationship between the query, the relaxed query and the approximate answer becomes that of a conceptual distance:
𝑢 is the query instance that represents the relaxed query, 𝑣 is a candidate instance that represents an approximate answer, and
the intension of the conceptual distance 𝑖𝑛𝑡(𝛿(𝑢, 𝑣)) = 𝑄(𝑢) ∩𝑃𝐺𝑃 𝑄(𝑣) represents the relaxed query (the most specific one for that
approximate answer). As a consequence, by computing the concepts of neighbors of the instantiation 𝑢 of the query, we obtain the
approximate answers as their proper extensions. The partial ordering on concepts of neighbors provides a pre-order on approximate
answers. Approximate answers coming from the same proper extension are considered as equally good, and approximate answers
coming from more specific concepts are considered as better. A total ordering can be obtained by combining extensional or intensional
numerical similarity on concepts and a global ranking on instances. For each approximate answer, the concept intension tells us which
relaxations have been applied to the query.

Compared to existing approaches of query relaxation where the time delay before finding the first approximate answers is not
bounded, the partitioning algorithm computing concepts of neighbors can provide a ranking of approximate answers from the
beginning. This ranking simply gets more and more accurate with runtime. Another advantage is that the number of considered
relaxed queries is bounded by the number of instances – and in general much lower – rather than exponential in the size of the
query. Moreover, the computation of their sets of answers is shared in part between the relaxed queries.

6.1.3. Experiments

We here report experiments that compare the efficiency of Concepts of Neighbors to existing approaches for query relaxation. All
details can be found in [14]. We compare four algorithms: two baseline algorithms, RELAXENUM and NODEENUM, and two variants of
our algorithm, PARTITION and PARTITIONLJ. RELAXENUM is the classical approach of query relaxation, that enumerates relaxed queries
13

and computes their answers. NODEENUM does the opposite by enumerating RDF nodes, and computing the least common subsumer

International Journal of Approximate Reasoning 164 (2024) 109059H.A. Ayats, P. Cellier and S. Ferré

Fig. 5. Runtime (seconds, log scale) per algorithm and per query for MONDIAL (left) and LUBM10 (right).

Fig. 6. Runtime (seconds) per algorithm and per LUBM10 query for increasing maximum relaxation distance (1 to 7). Full height bars represent runtimes over 20
seconds.

between the query and the node description [48]. PARTITION and PARTITIONLJ are our two variants, and differ in that only the
latter uses lazy joins for computing concept extensions. We consider two execution modes: NOLIMIT for complete computations; and

MAXRELAX for a limit to relaxation distance (not applicable to NODEENUM). For experiments, we use sets of queries on a few datasets
of different size: 7 queries having 5 to 21 elements in their pattern on a geographical dataset (MONDIAL [49], 12k triples), 7 queries
having 3 to 7 elements in their pattern [44] on two synthetic datasets about universities (LUBM10, 1.3M triples; LUBM100, 13M
triples [50]).

Results in NoLimit mode Fig. 5 compares the runtime (log scale) of all algorithms on all queries of MONDIAL and LUBM10 in NOLIMIT

mode. A few runtimes are missing for NODEENUM on LUBM10, and for RELAXENUM and PARTITION on Q6 of MONDIAL because they are
much higher than other runtimes. RELAXENUM is sensitive to the query complexity, in particular to multivalued properties. NODEENUM

looks insensitive to the query complexity, but does not scale well with the number of nodes. PARTITION and PARTITIONLJ are always
more efficient – or equally efficient – and the use of lazy joins generally makes it even more efficient. On LUBM10, PARTITIONLJ is
typically one order of magnitude more efficient than RELAXENUM. It can also be observed that PARTITIONLJ scales well with data size
because from MONDIAL to LUBM10, a 100-fold increase in number of triples, the median runtime also follows a 100-fold increase, from
0.01-0.1 s to 1-10 s. This linear scaling is verified on LUBM100 (not shown) where the runtimes are all 10 times higher. We want to
emphasize that it is encouraging that the full relaxation of a query over a 1.3M-triples dataset can be done in 4 s on average.

Results in MaxRelax mode In practice, one is generally interested in the most similar approximate answers, and therefore in the
relaxed queries with the smaller relaxation distances. It is therefore interesting to compare algorithms when the relaxation distance
is bounded. Fig. 6 compares RELAXENUM and PARTITIONLJ on LUBM10 queries for increasing values of maximal relaxation distance,
here from 1 to 7 relaxations. As expected, the runtime of RELAXENUM grows in a combinatorial way, like the number of relaxed
queries, with the relaxation distance. On the contrary, the runtime of PARTITIONLJ grows more quickly for 1–4 relaxations, and then
almost flattens in most cases. The flattening can be explained by several factors. The main factor is that most relaxed queries are
redundant and are pruned by the partitioning algorithm. Another factor is that query evaluation is partially shared between different
queries. That sharing is also the cause for the higher cost with 1–4 relaxations. In summary, PARTITIONLJ scales very well with the
number of relaxations, while RELAXENUM does not. This is a crucial property for similarity search where many relaxation steps are
necessary.

Number of relaxed queries The efficiency of PARTITION and PARTITIONLJ is better understood when comparing the number of concepts
of neighbors (C-N) to the number of relaxed queries (RQ). Over the 7 LUBM10 queries, there are in total 59 C-Ns out of 2899 RQs,
14

hence a 50-fold decrease.

International Journal of Approximate Reasoning 164 (2024) 109059H.A. Ayats, P. Cellier and S. Ferré

6.2. Knowledge graph completion

The open nature of KGs often implies that they are incomplete, and a lot of work have studied the use of machine learning
techniques to complete them. The task of knowledge graph completion, aka. link prediction [51], consists in predicting a missing
edge between two entities: e.g., predicting that the director of the film Avatar is James Cameron. In Graph-FCA term, given a graph
context 𝐾 = (𝑂, 𝐴, 𝐼) representing a knowledge graph, a binary attribute 𝑟 ∈𝐴 representing a relation, and an object 𝑢 ∈𝑂 representing
an entity, the objective is to predict the missing entity in an incomplete incidence 𝑟(𝑢, ?) or 𝑟(?, 𝑢). Because of the symmetry between
the two cases, we only consider in the following the case 𝑟(𝑢, ?) where the head entity 𝑢 is fixed and the tail entity 𝑣 is to be predicted.

This section is a summary of a previous work [16] on the exploitation of Concepts of Neighbors for knowledge graph completion.
Indeed, the partitioning of the KG entities into concepts of neighbors provides a valuable basis for different kinds of inferences, like
the inference of the missing node of an incomplete edge. One advantage is that inference can be performed without training a model
beforehand, so that the proposed approach can easily cope with dynamic knowledge graphs. Another advantage is that explanations
can be provided for each inference, based on the intent of concepts of neighbors. Finally, the experimental results show competitive
performance w.r.t. state-of-the-art approaches in link prediction.

6.2.1. Related work

Nickel et al. [51] have identified two kinds of approaches that differ by the kind of model they use: latent feature models, and graph
feature models. The former is by far the most studied one. Latent feature models learn embeddings of entities and relations into low-

dimensional vector spaces, and then compute the truthfulness score of edges 𝑟(𝑢, 𝑣) by combining the embeddings of the two entities
and the embedding of the relation: e.g., TransE [52], RGNN [53], ConvE [54]. Graph feature models, also called observed feature
models, make inferences directly from the observed edges in the KG: e.g., Random walk inference [55], Horn clauses AMIE 3 [35],
AnyBURL [56]. Latent feature models have the best performance, but they do not provide explanations for their inferences, unlike
graph feature models. The key novelty of Concepts of Neighbors is that they offer an instance-based approach rather than a model-

based approach. This implies that there is no need for a training phase, and that all the learning effort is done at inference time.

6.2.2. Application of concepts of neighbors to link prediction

Given an incomplete incidence 𝑟(𝑢, ?), we compute the concepts of neighbors (C-Ns) of head entity 𝑢. From there, we infer a
ranking of candidate entities for the tail entity 𝑣. In fact, as 𝑟 is not involved in the computation of C-Ns, many target relations can
be inferred at nearly the same cost as a single relation. Indeed, the main cost is in the computation of C-Ns. Moreover, the latter is
easily controlled because the computation algorithm is any-time (see Section 2).

The principle of C-N-based inference is to generate a ruleset for each concept of neighbors 𝛿𝑙 ∈ C−N(𝑢). Those rules are similar
in nature to those of AMIE+ or AnyBURL except that only rules that are matched by the head entity 𝑢 are generated. Indeed, the
bodies of generated rules are intensions of C-Ns, which are subsets of 𝑢’s description (int(𝛿𝑙) ⊆𝑃𝐺𝑃 𝑄(𝑢)). From the concept intension
𝑖𝑛𝑡(𝛿𝑙) =𝑄𝑙 = [𝑥 ← 𝑃𝑙], with 𝑥𝑙 the tuple of variables in 𝑃𝑙 , we generate two kinds of inference rules 𝜌:

1. by-copy rules: 𝜌 ∶= 𝑃𝑙 → 𝑟(𝑥, 𝑣), for each 𝑣 ∈𝑂;

2. by-analogy rules: 𝜌 ∶= 𝑃𝑙 → 𝑟(𝑥, 𝑦), for each 𝑦 ∈ 𝑥𝑙, 𝑦 ≠ 𝑥.

Inference by copy The first kind of rules (by-copy rules) predicts that when an entity matches 𝑃𝑙 as 𝑥, it is related to the entity 𝑣

through the relation 𝑟. As 𝑢 matches 𝑃𝑙 as 𝑥 by definition of concepts of neighbors, the rule infers that 𝑢 is related to 𝑣. In formula,
the set of inferred entities is simply 𝑉𝜌 = {𝑣}. Of course, the strength of the inference depends on the support and confidence of the
rule 𝜌, which are defined as follows.

supp(𝜌) = |𝑎𝑛𝑠([𝑥← 𝑃𝑙, 𝑟(𝑥, 𝑣)])| conf (𝜌) =
|𝑎𝑛𝑠([𝑥← 𝑃𝑙, 𝑟(𝑥, 𝑣)])|
|𝑎𝑛𝑠([𝑥← 𝑃𝑙])|+ 𝜆

Like this is done in AnyBURL [56], we use a constant 𝜆 ≥ 0 as an additive Laplace smoothing, in order to favor rules with larger
support. The principle of inference by copy is that the tail entities 𝑣 to be predicted for 𝑢 can be copied from the tail entities of 𝑢’s
neighbors. For example, if incidence 𝑝𝑎𝑟𝑒𝑛𝑡(𝐶ℎ𝑎𝑟𝑙𝑜𝑡𝑡𝑒, 𝐾𝑎𝑡𝑒) is missing in the example graph of Fig. 1, it can be inferred from some
of her closest neighbors: “From one hand, George is similar to Charlotte because he has William as a father; from the other hand George’s
mother is Kate; so Charlotte’s mother is expected to be Kate too” (support=1, confidence=1∕(2 + 𝜆)).

Inference by analogy The second kind of rules (by-analogy rules) predicts that when a pair of entities match 𝑃𝑙 as 𝑥 and 𝑦, they
are related through 𝑟. As 𝑢 matches 𝑃𝑙 as 𝑥 by definition of concepts of neighbors, the rule infers that 𝑢 is related through 𝑟 to any
entity 𝑣 that matches 𝑃𝑙 as 𝑦 when 𝑥 = 𝑢. In formula, the set of inferred entities is 𝑉𝜌 = {𝑣 ∣ (𝑢, 𝑣) ∈ 𝑎𝑛𝑠([𝑥, 𝑦 ← 𝑃𝑙])}. Like above, the
strength of the inference depends on the support and confidence of the rule, whose definitions are similar to by-copy rules except
that they involve pairs of entities instead of entities.

supp(𝜌) = |𝑎𝑛𝑠([𝑥, 𝑦← 𝑃𝑙, 𝑟(𝑥, 𝑦)])| conf (𝜌) =
|𝑎𝑛𝑠([𝑥, 𝑦← 𝑃𝑙, 𝑟(𝑥, 𝑦)])|
|𝑎𝑛𝑠([𝑥, 𝑦← 𝑃𝑙])|+ 𝜆

The principle of inference by analogy here relies on the observation that “𝑢 is to 𝑣 as 𝑥 is to 𝑦”. By observing that pairs (𝑥, 𝑦) that
15

match pattern 𝑃𝑙 often satisfy 𝑟(𝑥, 𝑦), one can predict the missing entity in 𝑟(𝑢, ?) to be any entity 𝑣 such that pattern 𝑃𝑙 is matched

International Journal of Approximate Reasoning 164 (2024) 109059H.A. Ayats, P. Cellier and S. Ferré

Table 2

MRR performance of representative approaches on link prediction
benchmarks.

WN18 WN18RR FB15k FB15k-237

#triples 151k 95k 592k 310k

ConvE 0.942 0.460 0.745 0.316

ComplEx-N3 0.950 0.480 0.860 0.370

AnyBURL 0.950 0.480 0.830 0.300

C-N 0.969 0.469 0.849 0.296

for 𝑥 = 𝑢 and 𝑦 = 𝑣. For example, assume in the example graph that George and Charlotte are only known to have for father William,
and that Kate is only known to be William’s spouse, i.e. incidences 𝑝𝑎𝑟𝑒𝑛𝑡(𝐺𝑒𝑜𝑟𝑔𝑒, 𝐾𝑎𝑡𝑒) and 𝑝𝑎𝑟𝑒𝑛𝑡(𝐶ℎ𝑎𝑟𝑙𝑜𝑡𝑡𝑒, 𝐾𝑎𝑡𝑒) are missing. Here,
inference by copy for the parents of Charlotte would only produce Charles and Diana, using William and Harry as similar entities
(see C-N 4 in Fig. 2). The intension of the conceptual similarity of Charlotte with William and Harry is

𝑄𝑊𝐻 = [𝑥← 𝑃𝑊𝐻]
𝑃𝑊𝐻 = 𝑝𝑎𝑟𝑒𝑛𝑡(𝑥, 𝑦),𝑚𝑎𝑛(𝑦), 𝑠𝑝𝑜𝑢𝑠𝑒(𝑦, 𝑧), 𝑠𝑝𝑜𝑢𝑠𝑒(𝑧, 𝑦),𝑤𝑜𝑚𝑎𝑛(𝑧),

saying that “they have a father married to a woman”. From there, the following by-analogy rule can be generated: 𝑃𝑊𝐻 → 𝑝𝑎𝑟𝑒𝑛𝑡(𝑥, 𝑧).
This rule states that “any female spouse (wife) of a male parent (father) is a parent”. Applying this rule to Charlotte (and equivalently
to George) leads to the inference of 𝑝𝑎𝑟𝑒𝑛𝑡(𝐶ℎ𝑎𝑟𝑙𝑜𝑡𝑡𝑒, 𝐾𝑎𝑡𝑒) because Kate is indeed the wife of William, who is the father of Charlotte.
It is noteworthy here that Kate is predicted to be a parent, although she never appears as a parent in the incomplete graph. This is
not possible with inference by copy.

Aggregation of inferences Given an incomplete triple 𝑟(𝑢, ?), the output of a link prediction system is a ranking of entities 𝑣. Rankings
of entities are evaluated with measures such as Hits@𝑁 (defined as 1 if the correct entity is among the first 𝑁 entities, 0 otherwise),
and MRR (Mean Reciprocal Rank, the average of the inverse of the rank of the correct entity, in range [0, 1]). The question that
remains to be addressed is how to aggregate inferences from all above rules into a global ranking. Indeed, the known entity 𝑢 leads
to multiple concepts of neighbors, each concept of neighbors 𝛿𝑙 generates multiple rules, and each rule 𝜌 infers a set 𝑉𝜌 of candidate
entities 𝑣. The same candidate 𝑣 may be inferred by several rules, possibly generated from different concepts. The idea is to combine
the measures of rules to give a score to each candidate 𝑣, in order to get a global ranking. We reuse the Maximum Confidence
(MC) score introduced in AnyBURL [56]. In short, the score of an entity 𝑣 is the list of the confidences of the rules that inferred it, in
decreasing order.

6.2.3. Experiments

The approach based on Concepts of Neighbors has been compared to state-of-the-art approaches – both latent-based and rule-

based – on classical benchmarks for link prediction: WN18, WN18RR, FB15k, FB15k-237. The main results are shown in Table 2,
and all details about the experiments are available in [16]. ComplEx-N3 (latent-based) clearly outperforms other approaches on all
datasets except WN18 where C-N outperforms other approaches on the three measures (MRR, Hits@1, Hits@10). C-N comes second
on FB15k, and remains close to the best approaches on WN18RR. On FB15k-237, the MRR delta is -0.074 with ComplEx-N3, but
only -0.004 with AnyBURL, the best rule-based approach. It is noteworthy that C-N is competitive with AnyBURL because, whereas
AnyBURL rules are computed in a supervised manner (knowing the target relation 𝑟), C-N concepts are computed in an unsupervised
manner (i.e., only knowing the head entity 𝑢). This implies that the concepts of neighbors of an entity can be computed once, and
used for many different inference tasks, e.g. predicting links for several target relations.

The MONDIAL geographical dataset [49] was used to evaluate how complementary by-copy and by-analogy rules are. Although
by-analogy rules appear more powerful than by-copy rules with an MRR equal to 0.424 vs 0.286, it is beneficial to combine the two
as this raises the MRR to 0.455.

We report on an example of inference in the MONDIAL geographical dataset [49]. The Islay island is correctly predicted to
belong to Inner Hebrides (score=0.34 0.34 0.31) by two by-analogy rules (supp=54, conf=0.34) and one by-copy rule (supp=11,
conf=0.31). The five subsequent predictions are other UK islands that were inferred by the same first and second by-analogy rules,
and by another third rule with lower confidence. The top-1 rule is the following one.

𝑙𝑜𝑐𝑎𝑡𝑒𝑑𝐼𝑛(𝑥, 𝑢), 𝑙𝑜𝑐𝑎𝑡𝑒𝑑𝐼𝑛(𝑧, 𝑢), 𝑏𝑒𝑙𝑜𝑛𝑔𝑇 𝑜𝐼𝑠𝑙𝑎𝑛𝑑𝑠(𝑧, 𝑦),
𝑙𝑜𝑐𝑎𝑡𝑒𝑑𝐼𝑛𝑊 𝑎𝑡𝑒𝑟(𝑥, 𝑣), (𝑣 =𝐴𝑡𝑙𝑎𝑛𝑡𝑖𝑐𝑂𝑐𝑒𝑎𝑛)
→ 𝑏𝑒𝑙𝑜𝑛𝑔𝑇 𝑜𝐼𝑠𝑙𝑎𝑛𝑑𝑠(𝑥, 𝑦)

It is a by-analogy rule that says that an island 𝑥 belongs to islands 𝑦 if 𝑥 shares a location 𝑢 (here, UK) with another island 𝑧 that
belongs to 𝑦, and 𝑥 is located in the Atlantic Ocean. Apart from the specialization to the Atlantic Ocean, this rules makes sense
16

because if two islands are located in a same place, e.g. a same country, there is a good chance that they belong to the same islands.

International Journal of Approximate Reasoning 164 (2024) 109059H.A. Ayats, P. Cellier and S. Ferré

6.3. Relation extraction

Relation extraction is a classical task in machine learning for natural language processing (NLP). This task consists into predicting
which type of relation – if any – links two given entities (a subject and an object) in a natural language text. For example, in the
sentence “The University of Rennes is French”, with University of Rennes tagged as subject and French as object, the objective is to
identify that the relation nationality links the subject to the object.

This section gathers the results of two previous studies [17,18]. It presents a method based on concepts of neighbors for relation
extraction, and shows positive results of this approach, being competitive with the state of the art and presenting interesting inter-

pretability properties. First, the related work about the relation extraction task is presented. Second, we explain how concepts of
neighbors can be used for relation extraction. Finally, we summarize the experiments conducted and the results obtained, pointing its
results both on the quantitative aspect and the advantages in terms of interpretability. Note that the dataset used in the experimental
part is in English, but this work is relatively independent of the language, and could be applied to other languages, as long as the
language structure allows for tools similar to those used to exist, and as long as those tools have been developed.

6.3.1. Related works

Initially, as for many NLP tasks, the first approaches proposed for relation extraction used handmade rules applied to sentences
parsed thanks to handmade grammars. As the design of those rules and grammars were time-consuming for a hardly reliable result,
those methods were abandoned to the profit of supervised machine learning approaches, using annotated corpora. For more details,
see the review [57]. During the last decade, with the important progresses in deep learning, neural network-based approaches
appeared: convolutional neural networks [58], then LSTM [59], and graph convolution networks [60,61]. Today, the state of the art
is dominated by transformer-based pre-trained language models, such as BERT and its variations [62–64]. Despite their impressive
results, those approaches, as most deep-learning approaches, act as black boxes and lack interpretability.

Most relation extraction datasets and approaches use a negative class, or no_relation class, collecting all the task instances (i.e.,
pairs of named entities) for which no relation exists between the subject and the object. Therefore, the relation extraction task can be
divided in two steps: a relation detection step, charged to determine if a given instance expresses a relation, and a relation classification

step, in which the instances expressing a relation are classified among different relation types. Such a two-step approach is introduced
in [65]. As the Concepts of Neighbors approach is based on the computation of similarities between instances, and as the instances
of the negative class have no reason to be similar one to each other, the method developed below is suited for relation classification,
and should be coupled with a relation detection module to perform proper relation extraction, as presented in [18].

6.3.2. Application of concepts of neighbors to relation classification

The task of performing relation classification on natural text sentences with concepts of neighbors can be divided into three
steps. First, the textual data have to be transformed into relational data. Then, Concepts of Neighbors have to be computed for each
instance to be classified. Finally, a ranking method has to be defined to infer a prediction from the set of concepts of neighbors.

Sentence modeling The first step is to model each instance of the relation extraction dataset as a graph. An instance is a sentence
that is annotated with the position and type of two entities (subject and object), and that is labeled with the expected relation type
between the two entities. The modeling presented in this section has both syntactic and semantic features, and relies on an NLP
toolkit (such as Stanford CoreNLP [66]) and on WordNet [67], a hierarchical lexical database for English. The modeling is made as
an RDF graph, because this formalism is flexible, permits type relaxation, and the CONNOR library (see 5.3) has been developed for
computing concepts of neighbors in RDF graphs.

The sentence is first processed with an NLP pipeline (composed of a tokenizer, a lemmatizer, a part-of-speech tagger, a dependency
tree parser and a named entity recognizer) in order to extract linguistic knowledge. Then, the result of this processing is used to
create a syntactic modeling of the sentence. An RDF entity with a unique id is created for each token and each named entity of the
sentence. Then the dependency relations between those tokens and named entities are added in order to represent the syntactic tree
of the sentence. Finally, RDF types are added to the model for representing the part-of-speech tags, the lemmas, the named entity
positions and types. Fig. 7 shows the syntactic modeling of the sentence “The University of Rennes is French”.

To this syntactic modeling, we add a semantic layer, using WordNet. To do so, an RDF ontology is built on the lemmas of the verbs
and nouns: for each lemma, a supertype is created for each synset containing this lemma, and for each synset, a supertype is created
for each of its hypernym synsets. This allows for type relaxation over the lemmas, and therefore identification of semantically-close
lemmas. Fig. 8 represents an extract of the type hierarchy that is generated by the lemmas university, school, religion and faith. It can
be seen that the lemmas university and school can both be relaxed into the synset educational institution, and that those four lemmas
can all be relaxed into the synset institution.

By combining the syntactic modeling of sentences and the semantic relaxation mechanism over the lemmas, we obtain a syntactic
and semantic modeling of natural language sentences as RDF graphs in which each token and named entity is identified by a unique
RDF entity for which the computation of concepts of neighbors is possible.

Use of concepts of neighbors For a given instance, the objective is to discover which are the other instances of the training dataset
that are the more similar, and then predict a relation type from them. As an instance is a (subject, object) couple, we use binary
17

concepts of neighbors, whose extensions are sets of similar (subject, object) couples.

International Journal of Approximate Reasoning 164 (2024) 109059H.A. Ayats, P. Cellier and S. Ferré

Fig. 7. Syntactic modeling of the sentence “The University of Rennes is French”.

Fig. 8. Example of type hierarchy over lemmas generated with WordNet.

In addition, a mechanism similar to the RECENT paradigm presented in [64] is used: before computing the concepts of neighbors
of a (subject, object) couple, we deduce from its subject and object types the relation types that are compatible with this query
instance. Then we simply limit the set of candidate instances to the training instances labeled with a compatible relation type.

Scoring method for relation classification For each instance, a set of rules predicting the different relation types is constructed from
its set of concepts of neighbors: for each relation type 𝑟 and for each concept of neighbors 𝛿, we consider a rule 𝑅𝑟,𝛿 having for head
the relation type and for body the intension of the concept, and we compute its confidence in the classical way:

𝑐𝑜𝑛𝑓 (𝑅𝑟,𝛿) =
|{(𝑠, 𝑜) ∈ 𝛿.𝑒𝑥𝑡 ∣ 𝑟(𝑠, 𝑜)}|

|𝛿.𝑒𝑥𝑡|
Then, similarly to Section 6.2, the MC scoring method is used on those confidences to sort the possible predictions.

From relation classification to relation extraction As explained before, the method presented above is suited for relation classification
but not for relation extraction, and therefore it must be combined with a relation detection module to perform full relation extrac-

tion. In [18], this method is combined with LUKE [63], a transformer-based pre-trained language model fine-tuned on the relation
detection task in order to obtain a two-step relation extraction method.

6.3.3. Experiments

This section successively presents the dataset used to evaluate this approach, the comparison points used during those evaluations,
and the results of these evaluations.

Dataset The following experiments were conducted on TACRED [60], a standard widely-used dataset for Relation Extraction pro-
18

posed by Stanford University and composed of 100,000 instances (split between train, development and test instances) classified

International Journal of Approximate Reasoning 164 (2024) 109059H.A. Ayats, P. Cellier and S. Ferré

Table 3

Accuracy on the relation classification task, compared to baseline.

Timeout (s) 10 20 30 60 120 300 600 1200

Ours 82.0 82.1 82.7 82.9 83.4 83.6 83.6 83.6

Baseline 80.4

Table 4

F-score for several Relation Extraction meth-

ods on TACRED.

Method F1 score

LUKE [63] 72.7

BERT-LSTM-Base [68] 67.8

Ours 66.9

C-GCN [60] 66.4

GCN [60] 64.0

Fig. 9. An explanation for the inference of relation per:city_of_residence.

among 41 relation types and a no_relation negative class. Issued from the TAC KBP challenge, those instances consist into sentences
in English, mainly issued from newspaper, annotated by crowdsourcing. In order to reflect real-world usage, this dataset contains
79.5% negative examples. For evaluation on the relation classification sub-task, only the positive examples are considered, while the
whole dataset is used for experiments on the relation extraction task.

Comparison points For relation classification, as the experiments are made on a subset of TACRED, the comparison is made with a
naive baseline. For a given example, this baseline simply predicts the most probable relation type in the dataset according to the
types of the subject and object.

For relation extraction, the comparison is made with pre-existing deep-learning relation extraction systems. Two of them use
transformer-based pre-trained language models (LUKE [63] and BERT-LSTM-Base [68]), while GCN and C-GCN use graph convolution
networks over the dependency tree [60].

Results On the relation classification task, several experiments were conducted. As explained in Section 5.1, our algorithm is anytime,
and therefore experiments were made using different timeouts. Table 3 presents the accuracy scores for both our approach (with
a timeout range from 10 seconds to 20 minutes) and the baseline. It can be seen that, whatever is the timeout, our approach
outperforms the baseline. In addition, this shows that for a timeout over 120 seconds, the accuracy saturates: the score of 83.6%
seems to be the best achievable score here, whatever the timeout.

On the relation extraction task, experiments were conducted by combining our relation classification method with a relation
detection module, as presented previously. The results obtained are presented in Table 4. It can be seen that, even if our approach
cannot compete with state-of-the-art transformer-based deep learning approaches, it outperforms approaches such as GCN or C-GCN,
which rely on a similar representation of the text.

However, the main asset of this approach for relation extraction is not quantitative but qualitative, and rely on interpretability:
for each positive prediction, we can obtain the list of rules from which this prediction was made, and use it as an explanation of the
prediction. Let us take for example the sentence “Sollecito has said he was at his own apartment in Perugia, working at his computer.”

Our system predicts that between the subject his and the object Perugia, a relation is detected and is of type per:city_of_residence. If we
look to the rules of high confidence that predicted this relation type, we find a rule of body presented in Fig. 9. This rule body can
be interpreted as:

• The subject has lemma he and is the possessor of an apartment;
19

• The object is the name of a city in which there is something.

International Journal of Approximate Reasoning 164 (2024) 109059H.A. Ayats, P. Cellier and S. Ferré

We can effectively claim that such a rule seems reasonable to predict with a good confidence relation per:city_of_residence.

7. Conclusion

In this article we have presented the Concepts of Neighbors, an FCA-based approach for instance-based learning on relational data.
This approach, based on Graph-FCA (an extension of FCA for relational data), provides a symbolic notion of distance between entities
(or tuples of entities), and therefore allows for inference tasks similarly to k-Nearest-Neighbors. An efficient anytime algorithm has
been developed for the computation of concepts of neighbors, based on the progressive partitioning of the set of potential neighbors
into concepts and on a lazy version of the join operator. CONNOR, a Java implementation of this method on RDF graphs, has been
presented, and is available as open-source code. Finally, we have shown the versatility of concepts of neighbors by presenting three
applications on three different tasks. Two applications work on knowledge graphs, while the other works on graph representations
of texts.

In future works, other kinds of applications of Concepts of Neighbors on Graph-FCA can be considered. For instance, in the
semantic web field, Concepts of Neighbors can be used on knowledge graph entities for knowledge graph alignment or entity
clustering. In the NLP domain, the syntactic-semantic modeling of text as RDF graphs, combined to the Concepts of Neighbors, could
be used for other tasks such as semantic similarity. More generally, this method could be extended to other relational data types,
such as molecular graphs. In addition, the concepts of neighbors approach can be adapted to other extensions of FCA, and therefore
this instance-based learning approach could be applied to any data that could be formalized in an FCA framework.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

A link to a public software repository is given in the manuscript.

Acknowledgements

The authors wish to thank Nicolas Fouqué (CNRS) for his work on the first Java implementation of the algorithms for the
computation of Concepts of Neighbors, as well as Pierre Nunn (ENS Rennes) for his experimental and development work on enhancing
these algorithms.

References

[1] E.F. Codd, A relational model of data for large shared data banks, Commun. ACM 13 (6) (1970) 377–387.

[2] R. Angles, C. Gutierrez, Survey of graph database models, ACM Comput. Surv. 40 (1) (2008) 1:1–1:39.

[3] C. Gutierrez, J.F. Sequeda, Knowledge graphs, Commun. ACM 64 (3) (2021) 96–104.

[4] R. Wille, Restructuring lattice theory: an approach based on hierarchies of concepts, in: I. Rival (Ed.), Ordered Sets, Springer, Netherlands, Dordrecht, 1982,
pp. 445–470.

[5] B. Ganter, R. Wille, Formal Concept Analysis: Mathematical Foundations, Springer, 1999.

[6] S. Ferré, M. Huchard, M. Kaytoue, S.O. Kuznetsov, A. Napoli, Formal concept analysis: from knowledge discovery to knowledge processing, in: A Guided Tour
of Artificial Intelligence Research: Volume II: AI Algorithms, Springer International Publishing, 2020, pp. 411–445.

[7] K.-M. Yang, E.-H. Kim, S.-H. Hwang, S.-H. Choi, Fuzzy concept mining based on formal concept analysis, Int. J. Comput. 2 (3) (2008).

[8] K.E. Wolff, Temporal concept analysis, in: International Conference on Conceptual Structures (ICCS), 2001, pp. 91–107.

[9] B. Ganter, S.O. Kuznetsov, Pattern structures and their projections, in: Conceptual Structures: Broadening the Base, in: Lecture Notes in Computer Science,
Springer, 2001, pp. 129–142.

[10] M. Rouane-Hacene, M. Huchard, A. Napoli, P. Valtchev, Relational concept analysis: mining concept lattices from multi-relational data, Ann. Math. Artif. Intell.
67 (1) (2013) 81–108.

[11] J. Kötters, Concept lattices of a relational structure, in: International Conference on Conceptual Structures (ICCS), Springer, Berlin, Heidelberg, 2013,
pp. 301–310.

[12] S. Ferré, P. Cellier, Graph-FCA in practice, in: International Conference on Conceptual Structures (ICCS), 2016, pp. 107–121.

[13] D.W. Aha (Ed.), Lazy Learning, Springer International Publishing, 1997.

[14] S. Ferré, Answers partitioning and lazy joins for efficient query relaxation and application to similarity search, in: The Semantic Web, 2018, pp. 209–224.

[15] H. Ayats, P. Cellier, S. Ferré, CONNOR: exploring similarities in graphs with concepts of neighbors, in: ETAFCA 2022 - Existing Tools and Applications for Formal
Concept Analysis, 2022.

[16] S. Ferré, Application of concepts of neighbours to knowledge graph completion, Data Sci. 4 (1) (2021) 1–28.

[17] H. Ayats, P. Cellier, S. Ferré, Extracting relations in texts with concepts of neighbours, in: International Conference on Formal Concept Analysis, 2021.

[18] H. Ayats, P. Cellier, S. Ferré, A two-step approach for explainable relation extraction, in: Advances in Intelligent Data Analysis, 2022, pp. 14–25.

[19] S. Ferré, Concepts de plus proches voisins dans des graphes de connaissances, in: Journées Francophones D’Ingénierie des Connaissances, 2017, pp. 163–174.

[20] T. Horváth, S. Wrobel, U. Bohnebeck, Relational instance-based learning with lists and terms, Mach. Learn. 43 (1) (2001) 53–80.

[21] A. Hermann, S. Ferré, M. Ducassé, An interactive guidance process supporting consistent updates of RDFS graphs, in: International Conference on Knowledge
Engineering and Knowledge Management, vol. 7603, 2012, pp. 185–199.

[22] S.O. Kuznetsov, Machine learning and formal concept analysis, in: Concept Lattices, in: Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, 2004,
20

pp. 287–312.

http://refhub.elsevier.com/S0888-613X(23)00190-1/bib68A898112A7298893F36266335B30C23s1
http://refhub.elsevier.com/S0888-613X(23)00190-1/bib061FF89119FFFAE0A2176BC69D67DA44s1
http://refhub.elsevier.com/S0888-613X(23)00190-1/bib3B4373E33DBD2F89AB09B2E59FC19DA9s1
http://refhub.elsevier.com/S0888-613X(23)00190-1/bibAC6E5EF47493A0DA290A1B83962A9D14s1
http://refhub.elsevier.com/S0888-613X(23)00190-1/bibAC6E5EF47493A0DA290A1B83962A9D14s1
http://refhub.elsevier.com/S0888-613X(23)00190-1/bib59D8E02299ECB8B6566C470DA9A5AF2Fs1
http://refhub.elsevier.com/S0888-613X(23)00190-1/bib109BF5BAF04DE1CB04585AED36DF404Cs1
http://refhub.elsevier.com/S0888-613X(23)00190-1/bib109BF5BAF04DE1CB04585AED36DF404Cs1
http://refhub.elsevier.com/S0888-613X(23)00190-1/bibB5BD8384D5E419E81305B687159A6C97s1
http://refhub.elsevier.com/S0888-613X(23)00190-1/bib88BB1BC0FB48244999CD1E0C3DB7E336s1
http://refhub.elsevier.com/S0888-613X(23)00190-1/bibC2F96C21A78DCD023D4C2E6723AF51F8s1
http://refhub.elsevier.com/S0888-613X(23)00190-1/bibC2F96C21A78DCD023D4C2E6723AF51F8s1
http://refhub.elsevier.com/S0888-613X(23)00190-1/bibEF9EA1E2A975D1670D409984FB69AF45s1
http://refhub.elsevier.com/S0888-613X(23)00190-1/bibEF9EA1E2A975D1670D409984FB69AF45s1
http://refhub.elsevier.com/S0888-613X(23)00190-1/bib586154A1BF7EFEC88CDF93F7CDBB08E3s1
http://refhub.elsevier.com/S0888-613X(23)00190-1/bib586154A1BF7EFEC88CDF93F7CDBB08E3s1
http://refhub.elsevier.com/S0888-613X(23)00190-1/bibCDBE527B088E1C5589071B4660252C72s1
http://refhub.elsevier.com/S0888-613X(23)00190-1/bib3CD55401B5AB27703E91236BEE74ACB6s1
http://refhub.elsevier.com/S0888-613X(23)00190-1/bib22E701C43006875F48C838425F082532s1
http://refhub.elsevier.com/S0888-613X(23)00190-1/bibEFC3F8C0AE36612DCB6FE2B75D3B58E3s1
http://refhub.elsevier.com/S0888-613X(23)00190-1/bibEFC3F8C0AE36612DCB6FE2B75D3B58E3s1
http://refhub.elsevier.com/S0888-613X(23)00190-1/bib39D8E1694B18EB8989A6739CA53B50FDs1
http://refhub.elsevier.com/S0888-613X(23)00190-1/bibE0A10DC853B71579C420E95783406E21s1
http://refhub.elsevier.com/S0888-613X(23)00190-1/bibDD02996940A001D0CEED7DB5FE7DC8EDs1
http://refhub.elsevier.com/S0888-613X(23)00190-1/bib302D3CFFF6B4323EC5AE0C9633351EB1s1
http://refhub.elsevier.com/S0888-613X(23)00190-1/bib55C0FE021AB4FCE099DF09716ED84F38s1
http://refhub.elsevier.com/S0888-613X(23)00190-1/bib27F5C08444BF265ACF066C9A17358ADFs1
http://refhub.elsevier.com/S0888-613X(23)00190-1/bib27F5C08444BF265ACF066C9A17358ADFs1
http://refhub.elsevier.com/S0888-613X(23)00190-1/bibD0A73D4613A79FC3B7FF75D064A6C05Fs1
http://refhub.elsevier.com/S0888-613X(23)00190-1/bibD0A73D4613A79FC3B7FF75D064A6C05Fs1

International Journal of Approximate Reasoning 164 (2024) 109059H.A. Ayats, P. Cellier and S. Ferré

[23] A. Leeuwenberg, A. Buzmakov, Y. Toussaint, A. Napoli, Exploring pattern structures of syntactic trees for relation extraction, in: Int. Conf. Formal Concept
Analysis, vol. 9113, 2015, pp. 153–168.

[24] S.O. Kuznetsov, Fitting pattern structures to knowledge discovery in big data, in: International Conference on Formal Concept Analysis, vol. 7880, 2013,
pp. 254–266.

[25] S.O. Kuznetsov, Scalable knowledge discovery in complex data with pattern structures, in: Pattern Recognition and Machine Intelligence, in: Lecture Notes in
Computer Science, 2013, pp. 30–39.

[26] V. Codocedo, I. Lykourentzou, A. Napoli, A semantic approach to concept lattice-based information retrieval, Ann. Math. Artif. Intell. 72 (1) (2014) 169–195.

[27] A. Inokuchi, T. Washio, H. Motoda, An apriori-based algorithm for mining frequent substructures from graph data, in: Principles of Data Mining and Knowledge
Discovery, 2000, pp. 13–23.

[28] J. Huan, W. Wang, J. Prins, Efficient mining of frequent subgraphs in the presence of isomorphism, in: IEEE International Conference on Data Mining, 2003,
pp. 549–552.

[29] X. Yan, J. Han, gSpan: graph-based substructure pattern mining, in: IEEE International Conference on Data Mining, 2002, pp. 721–724.

[30] F. Zhu, X. Yan, J. Han, P.S. Yu, GPrune: a constraint pushing framework for graph pattern mining, in: Advances in Knowledge Discovery and Data Mining, 2007,
pp. 388–400.

[31] X. Yan, J. Han, CloseGraph: mining closed frequent graph patterns, in: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2003,
pp. 286–295.

[32] F. Bariatti, P. Cellier, S. Ferré, GraphMDL+: interleaving the generation and MDL-based selection of graph patterns, in: Annual ACM Symposium on Applied
Computing, 2021, pp. 355–363.

[33] M. van Leeuwen, T. De Bie, E. Spyropoulou, C. Mesnage, Subjective interestingness of subgraph patterns, Mach. Learn. 105 (1) (2016) 41–75.

[34] R. Ramezani, M.A. Nematbakhsh, M. Saraee, Mining association rules from semantic web data without user intervention, J. Comput. Secur. 7 (1) (2020) 81–94.

[35] J. Lajus, L. Galárraga, F. Suchanek, Fast and exact rule mining with AMIE 3, in: European Semantic Web Conference, in: Lecture Notes in Computer Science,
2020, pp. 36–52.

[36] S. Ferré, A proposal for extending formal concept analysis to knowledge graphs, in: Int. Conf. Formal Concept Analysis, vol. 9113, Springer International
Publishing, Cham, 2015, pp. 271–286.

[37] S. Ferré, P. Cellier, Graph-FCA: an extension of formal concept analysis to knowledge graphs, Discrete Appl. Math. 273 (2020) 81–102.

[38] P. Hitzler, M. Krötzsch, S. Rudolph, Foundations of Semantic Web Technologies, Chapman and Hall/CRC, 2009.

[39] J.F. Sowa, Conceptual structures: information processing in mind and machine, in: Association for Computing Machinery, Addison-Wesley Pub., Reading, MA,
1983.

[40] S. Ferré, P. Cellier, Modeling complex structures in graph-FCA: illustration on natural language syntax, in: Existing Tools and Applications for Formal Concept
Analysis, 2022, p. 1.

[41] F. Goasdoué, I. Manolescu, A. Roatiş, Efficient query answering against dynamic rdf databases, in: Int. Conf. Extending Database Technology, ACM, 2013,
pp. 299–310.

[42] T. Gaasterland, Cooperative answering through controlled query relaxation, IEEE Expert 12 (5) (1997) 48–59.

[43] C.A. Hurtado, A. Poulovassilis, P.T. Wood, Query relaxation in RDF, J. Data Semant. X (2008) 31–61.

[44] H. Huang, C. Liu, X. Zhou, Approximating query answering on RDF databases, World Wide Web 15 (1) (2012) 89–114.

[45] R. Frosini, A. Calì, A. Poulovassilis, P.T. Wood, Flexible query processing for SPARQL, Semant. Web 8 (4) (2017) 533–563.

[46] P. Dolog, H. Stuckenschmidt, H. Wache, J. Diederich, Relaxing RDF queries based on user and domain preferences, J. Intell. Inf. Syst. 33 (3) (2008) 239.

[47] S. Elbassuoni, M. Ramanath, G. Weikum, Query relaxation for entity-relationship search, in: Extended Semantic Web Conference, in: Lecture Notes in Computer
Science, Springer, Berlin, Heidelberg, 2011, pp. 62–76.

[48] S. Colucci, F.M. Donini, E. Di Sciascio, Common subsumbers in RDF, in: AI*IA 2013: Advances in Artificial Intelligence, 2013, pp. 348–359.

[49] W. May, Information Extraction and Integration with Florid: the Mondial Case Study, Technical Report 131, Universität Freiburg, Institut für Informatik, 1999.

[50] Y. Guo, Z. Pan, J. Heflin, LUBM: a benchmark for OWL knowledge base systems, in: International Semantic Web Conference, vol. 3, 2005, pp. 158–182.

[51] M. Nickel, K. Murphy, V. Tresp, E. Gabrilovich, A review of relational machine learning for knowledge graphs, in: IEEE, vol. 104, 2015, pp. 11–33.

[52] A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, O. Yakhnenko, Translating embeddings for modeling multi-relational data, in: Advances in Neural Information
Processing Systems, 2013, p. 9.

[53] M. Schlichtkrull, T.N. Kipf, P. Bloem, R. van den Berg, I. Titov, M. Welling, Modeling relational data with graph convolutional networks, in: European Semantic
Web Conference, in: Lecture Notes in Computer Science, 2018, pp. 593–607.

[54] T. Dettmers, P. Minervini, P. Stenetorp, S. Riedel, Convolutional 2D knowledge graph embeddings, in: AAAI Conference on Artificial Intelligence, vol. 32, 2018,
pp. 1811–1818.

[55] N. Lao, T. Mitchell, W.W. Cohen, Random walk inference and learning in a large scale knowledge base, in: Conf. of Empirical Methods in Natural Language
Processing, 2011, pp. 529–539.

[56] C. Meilicke, M.W. Chekol, D. Ruffinelli, H. Stuckenschmidt, Anytime bottom-up rule learning for knowledge graph completion, in: International Joint Conference
on Artificial Intelligence, 2019, pp. 3137–3143.

[57] R. Grishman, Twenty-five years of information extraction, Nat. Lang. Eng. (2019) 677–692.

[58] T.H. Nguyen, R. Grishman, Relation extraction: perspective from convolutional neural networks, in: Workshop on Vector Space Modeling for Natural Language
Processing, 2015, pp. 39–48.

[59] Y. Xu, L. Mou, G. Li, Y. Chen, H. Peng, Z. Jin, Classifying relations via long short term memory networks along shortest dependency paths, in: Conference on
Empirical Methods in Natural Language Processing, Association for Computational Linguistics, 2015, pp. 1785–1794.

[60] Y. Zhang, P. Qi, C.D. Manning, Graph convolution over pruned dependency trees improves relation extraction, in: Conference on Empirical Methods in Natural
Language Processing, 2018, pp. 2205–2215.

[61] F. Wu, T. Zhang, Simplifying graph convolutional networks, in: International Conference on Machine Learning, 2019, p. 11.

[62] X. Wang, Y. Zhang, Q. Li, Y. Chen, J. Han, Open information extraction with meta-pattern discovery in biomedical literature, in: ACM Int. Conf. on Bioinformatics,
Computational Biology, and Health Informatics, ACM Press, 2018, pp. 291–300.

[63] I. Yamada, A. Asai, H. Shindo, H. Takeda, Y. Matsumoto, LUKE: deep contextualized entity representations with entity-aware self-attention, in: Conference on
Empirical Methods in Natural Language Processing (EMNLP), 2020, pp. 6442–6454.

[64] S. Lyu, H. Chen, Relation classification with entity type restriction, in: Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, Association
for Computational Linguistics, 2021, pp. 390–395, Online.

[65] C. Mallart, M. Le Nouy, G. Gravier, P. Sébillot, Active learning for interactive relation extraction in a French newspaper’s articles, in: Recent Advances in Natural
Language Processing, 2021, pp. 886–894.

[66] C.D. Manning, M. Surdeanu, J. Bauer, J. Finkel, S.J. Bethard, D. McClosky, The Stanford CoreNLP natural language processing toolkit, in: Annual Meeting of the
Association for Computational Linguistics: System Demonstrations, 2014, pp. 55–60.

[67] G.A. Miller, WordNet: An Electronic Lexical Database, MIT Press, Cambridge, MA, 1998.
21

[68] P. Shi, J. Lin, Simple BERT Models for Relation Extraction and Semantic Role Labeling, Apr. 2019.

http://refhub.elsevier.com/S0888-613X(23)00190-1/bibA6BA6610AC491335B6905C97C6FD16D0s1
http://refhub.elsevier.com/S0888-613X(23)00190-1/bibA6BA6610AC491335B6905C97C6FD16D0s1
http://refhub.elsevier.com/S0888-613X(23)00190-1/bib4DDA795EB8FA55B21552FF496684553Es1
http://refhub.elsevier.com/S0888-613X(23)00190-1/bib4DDA795EB8FA55B21552FF496684553Es1
http://refhub.elsevier.com/S0888-613X(23)00190-1/bib2C79607767302A2A9E4C8C3419562CF7s1
http://refhub.elsevier.com/S0888-613X(23)00190-1/bib2C79607767302A2A9E4C8C3419562CF7s1
http://refhub.elsevier.com/S0888-613X(23)00190-1/bib75E8963794A440324E4D659A5B91E05Bs1
http://refhub.elsevier.com/S0888-613X(23)00190-1/bib803AB1F8C279FFF51CD08142C5ABE378s1
http://refhub.elsevier.com/S0888-613X(23)00190-1/bib803AB1F8C279FFF51CD08142C5ABE378s1
http://refhub.elsevier.com/S0888-613X(23)00190-1/bib4F59DCAE828FE3921B9A100583995CC1s1
http://refhub.elsevier.com/S0888-613X(23)00190-1/bib4F59DCAE828FE3921B9A100583995CC1s1
http://refhub.elsevier.com/S0888-613X(23)00190-1/bib3928175F2F174E9AA57F79F84E86C704s1
http://refhub.elsevier.com/S0888-613X(23)00190-1/bib124551A2D66752F4BEFED5F34F96EB0Fs1
http://refhub.elsevier.com/S0888-613X(23)00190-1/bib124551A2D66752F4BEFED5F34F96EB0Fs1
http://refhub.elsevier.com/S0888-613X(23)00190-1/bibDAFC519A5418D70AD3C386F5C2572863s1
http://refhub.elsevier.com/S0888-613X(23)00190-1/bibDAFC519A5418D70AD3C386F5C2572863s1
http://refhub.elsevier.com/S0888-613X(23)00190-1/bib53A894D08B3EC96A05482E62BA3E5A32s1
http://refhub.elsevier.com/S0888-613X(23)00190-1/bib53A894D08B3EC96A05482E62BA3E5A32s1
http://refhub.elsevier.com/S0888-613X(23)00190-1/bib5E30FE670ED8AA415703AD4EAAD1194Bs1
http://refhub.elsevier.com/S0888-613X(23)00190-1/bib66C17ED5A0FEF4D57039677F51256120s1
http://refhub.elsevier.com/S0888-613X(23)00190-1/bibAAFE560546EE0485C7B9DAD79ACCDC41s1
http://refhub.elsevier.com/S0888-613X(23)00190-1/bibAAFE560546EE0485C7B9DAD79ACCDC41s1
http://refhub.elsevier.com/S0888-613X(23)00190-1/bib66479B6525EE4B249BF70A9CE6B7301Es1
http://refhub.elsevier.com/S0888-613X(23)00190-1/bib66479B6525EE4B249BF70A9CE6B7301Es1
http://refhub.elsevier.com/S0888-613X(23)00190-1/bibE7106E403187EE2A94285F82A38EA4E7s1
http://refhub.elsevier.com/S0888-613X(23)00190-1/bibE842E1CDA2DD0344B738602695CFF547s1
http://refhub.elsevier.com/S0888-613X(23)00190-1/bibC18F2EF2A4B92D57E1C8D5C6F4B368D4s1
http://refhub.elsevier.com/S0888-613X(23)00190-1/bibC18F2EF2A4B92D57E1C8D5C6F4B368D4s1
http://refhub.elsevier.com/S0888-613X(23)00190-1/bib465505F9F2A95615D3B46D7060F1DED5s1
http://refhub.elsevier.com/S0888-613X(23)00190-1/bib465505F9F2A95615D3B46D7060F1DED5s1
http://refhub.elsevier.com/S0888-613X(23)00190-1/bib65E29F44BEEFF6FF247A55A71F67F88Es1
http://refhub.elsevier.com/S0888-613X(23)00190-1/bib65E29F44BEEFF6FF247A55A71F67F88Es1
http://refhub.elsevier.com/S0888-613X(23)00190-1/bibEA8B3FA227A78345AB4D59493946509As1
http://refhub.elsevier.com/S0888-613X(23)00190-1/bibD6D03AF94640E8CA62ABFB7E473C99E9s1
http://refhub.elsevier.com/S0888-613X(23)00190-1/bib1BFEEEB47D890369B7EC505C831C3E8Cs1
http://refhub.elsevier.com/S0888-613X(23)00190-1/bibD3583C0D2AB5B33712506A66B57BA665s1
http://refhub.elsevier.com/S0888-613X(23)00190-1/bibC88F3684155AA7F328A12B5A48A9E02Cs1
http://refhub.elsevier.com/S0888-613X(23)00190-1/bib58348F696E67DAC7147F74F1AD02ED23s1
http://refhub.elsevier.com/S0888-613X(23)00190-1/bib58348F696E67DAC7147F74F1AD02ED23s1
http://refhub.elsevier.com/S0888-613X(23)00190-1/bibEEEC33B3B588F1ECD1B84A373CA09ED2s1
http://refhub.elsevier.com/S0888-613X(23)00190-1/bib982478A6C5F65463D5D8E21656A624B1s1
http://refhub.elsevier.com/S0888-613X(23)00190-1/bib74D2A577DC0DC2F060CEBE7B1626C90Ds1
http://refhub.elsevier.com/S0888-613X(23)00190-1/bib472F4FF5439F797D06CA4EC943EE3AA6s1
http://refhub.elsevier.com/S0888-613X(23)00190-1/bib1BC4D3E9C0C437BD058151B4AF0027C5s1
http://refhub.elsevier.com/S0888-613X(23)00190-1/bib1BC4D3E9C0C437BD058151B4AF0027C5s1
http://refhub.elsevier.com/S0888-613X(23)00190-1/bib027E9BAC88F3D9BD24972331BC8A9CD8s1
http://refhub.elsevier.com/S0888-613X(23)00190-1/bib027E9BAC88F3D9BD24972331BC8A9CD8s1
http://refhub.elsevier.com/S0888-613X(23)00190-1/bib22BF522604F42239698E87CFC3D471F8s1
http://refhub.elsevier.com/S0888-613X(23)00190-1/bib22BF522604F42239698E87CFC3D471F8s1
http://refhub.elsevier.com/S0888-613X(23)00190-1/bib3D8720AFD922CEE0B47E73CBD0AA8967s1
http://refhub.elsevier.com/S0888-613X(23)00190-1/bib3D8720AFD922CEE0B47E73CBD0AA8967s1
http://refhub.elsevier.com/S0888-613X(23)00190-1/bib5CCA9289868721323D4B956C65894DDEs1
http://refhub.elsevier.com/S0888-613X(23)00190-1/bib5CCA9289868721323D4B956C65894DDEs1
http://refhub.elsevier.com/S0888-613X(23)00190-1/bibDFC6E1987DF1466589493EE0F45BBCA0s1
http://refhub.elsevier.com/S0888-613X(23)00190-1/bib0431FA3C4A608DCC98E4ABEA9FC50348s1
http://refhub.elsevier.com/S0888-613X(23)00190-1/bib0431FA3C4A608DCC98E4ABEA9FC50348s1
http://refhub.elsevier.com/S0888-613X(23)00190-1/bibEC4D99A3154608B669A618C4327D0784s1
http://refhub.elsevier.com/S0888-613X(23)00190-1/bibEC4D99A3154608B669A618C4327D0784s1
http://refhub.elsevier.com/S0888-613X(23)00190-1/bib5BA76A8C6BB486467D329483F907C7E6s1
http://refhub.elsevier.com/S0888-613X(23)00190-1/bib5BA76A8C6BB486467D329483F907C7E6s1
http://refhub.elsevier.com/S0888-613X(23)00190-1/bibC8532CCDEF23007194C73F380BA49530s1
http://refhub.elsevier.com/S0888-613X(23)00190-1/bib15FB1B91C6A853ABE81BA3FC80B76FE9s1
http://refhub.elsevier.com/S0888-613X(23)00190-1/bib15FB1B91C6A853ABE81BA3FC80B76FE9s1
http://refhub.elsevier.com/S0888-613X(23)00190-1/bib4DFC07D73577A95B8BCCEB6388444B63s1
http://refhub.elsevier.com/S0888-613X(23)00190-1/bib4DFC07D73577A95B8BCCEB6388444B63s1
http://refhub.elsevier.com/S0888-613X(23)00190-1/bib9C6563D88C57EE02D90BC367B6711305s1
http://refhub.elsevier.com/S0888-613X(23)00190-1/bib9C6563D88C57EE02D90BC367B6711305s1
http://refhub.elsevier.com/S0888-613X(23)00190-1/bib25B8D3208FB7AE449653DBB2FE9C8A97s1
http://refhub.elsevier.com/S0888-613X(23)00190-1/bib25B8D3208FB7AE449653DBB2FE9C8A97s1
http://refhub.elsevier.com/S0888-613X(23)00190-1/bibC5E1E73310D1C42E9AF99C01232965A2s1
http://refhub.elsevier.com/S0888-613X(23)00190-1/bibC5E1E73310D1C42E9AF99C01232965A2s1
http://refhub.elsevier.com/S0888-613X(23)00190-1/bibA9A56B56903FE83871369F939292F946s1
http://refhub.elsevier.com/S0888-613X(23)00190-1/bib30A8AE55FDA4FBB8161D140953570D41s1

	Concepts of neighbors and their application to instance-based learning on relational data
	1 Introduction
	2 Related work
	3 Preliminary definitions
	3.1 Formal concept analysis (FCA)
	3.2 Graph-FCA

	4 Concepts of neighbors
	4.1 The FCA case
	4.2 The graph-FCA case

	5 Algorithms
	5.1 Iterative partitioning of instances into concepts of neighbors
	5.2 Lazy join of match-sets
	5.3 Implementation

	6 Applications
	6.1 Query relaxation
	6.1.1 Related work
	6.1.2 Application of concepts of neighbors to query relaxation
	6.1.3 Experiments
	Results in NoLimit mode
	Results in MaxRelax mode
	Number of relaxed queries

	6.2 Knowledge graph completion
	6.2.1 Related work
	6.2.2 Application of concepts of neighbors to link prediction
	Inference by copy
	Inference by analogy
	Aggregation of inferences

	6.2.3 Experiments

	6.3 Relation extraction
	6.3.1 Related works
	6.3.2 Application of concepts of neighbors to relation classification
	Sentence modeling
	Use of concepts of neighbors
	Scoring method for relation classification
	From relation classification to relation extraction

	6.3.3 Experiments
	Dataset
	Comparison points
	Results

	7 Conclusion
	Declaration of competing interest
	Data availability
	Acknowledgements
	References

